導航:首頁 > 電腦文件 > 電腦硬碟列陣

電腦硬碟列陣

發布時間:2022-01-10 22:22:50

⑴ 急!!如何製作磁碟陣列(RAID)。電腦配置如下

你這個沒有辦法組哦。 組陣列要求硬碟容量 型號 批次一致較為穩定。 你這有個2TB 加1TB的話。只能組R-0 但是問題陣列是以最小容量 做為陣列的容量的 你的2TB會被視做1TB,所以組出來的陣列還是2TB 浪費了1TB的容量哦。你為什麼組陣列啊 剪視頻嗎?

⑵ 電腦的磁碟陣列是怎麼做的

磁碟陣列(DiscArray)是由許多台磁碟機或光碟機按一定的規則,如分條(Striping)、分塊(Declustering)、交叉存取(Interleaving)等組成一個快速,超大容量的外存儲器子系統。它在陣列控制器的控制和管理下,實現快速,並行或交叉存取,並有較強的容錯能力。從用戶觀點看,磁碟陣列雖然是由幾個、幾十個甚至上百個盤組成,但仍可認為是一個單一磁碟,其容量可以高達幾百~上千千兆位元組,因此這一技術廣泛為多媒體系統所歡迎。

盤陣列的全稱是:
RendanArrayofInexpensiveDisk,簡稱RAID技術。它是1988年由美國加州大學Berkeley分校的DavidPatterson教授等人提出來的磁碟冗餘技術。從那時起,磁碟陣列技術發展得很快,並逐步走向成熟。現在已基本得到公認的有下面八種系列。
1.RAID0(0級盤陣列)
RAID0又稱數據分塊,即把數據分布在多個盤上,沒有容錯措施。其容量和數據傳輸率是單機容量的N倍,N為構成盤陣列的磁碟機的總數,I/O傳輸速率高,但平均無故障時間MTTF(MeanTimeToFailure)只有單台磁碟機的N分之一,因此零級盤陣列的可靠性最差。
2.RAID1(1級盤陣列)
RAID1又稱鏡像(Mirror)盤,採用鏡像容錯來提高可靠性。即每一個工作盤都有一個鏡像盤,每次寫數據時必須同時寫入鏡像盤,讀數據時只從工作盤讀出。一旦工作盤發生故障立即轉入鏡像盤,從鏡像盤中讀出數據,然後由系統再恢復工作盤正確數據。因此這種方式數據可以重構,但工作盤和鏡像盤必須保持一一對應關系。這種盤陣列可靠性很高,但其有效容量減小到總容量一半以下。因此RAID1常用於對出錯率要求極嚴的應用場合,如財政、金融等領域。
3.RAID2(2級盤陣列)
RAID2又稱位交叉,它採用漢明碼作盤錯檢驗,無需在每個扇區之後進行CRC(CyclicReDundancycheck)檢驗。漢明碼是一種(n,k)線性分組碼,n為碼字的長度,k為數據的位數,r為用於檢驗的位數,故有:n=2r-1r=n-k
因此按位交叉存取最有利於作漢明碼檢驗。這種盤適於大數據的讀寫。但冗餘信息開銷還是太大,阻止了這類盤的廣泛應用。
4.RAID3(3級盤陣列)
RAID3為單盤容錯並行傳輸陣列盤。它的特點是將檢驗盤減小為一個(RAID2校驗盤為多個,DAID1檢驗盤為1比1),數據以位或位元組的方式存於各盤(分散記錄在組內相同扇區號的各個磁碟機上)。它的優點是整個陣列的帶寬可以充分利用,使批量數據傳輸時間減小;其缺點是每次讀寫要牽動整個組,每次只能完成一次I/O。
5.RAID4(4級盤陣列)
RAID4是一種可獨立地對組內各盤進行讀寫的陣列。其校驗盤也只有一個。
RAID4和RAID3的區別是:RAID3是按位或按位元組交叉存取,而RAID4是按塊(扇區)存取,可以單獨地對某個盤進行操作,它無需象RAID3那樣,那怕每一次小I/O操作也要涉及全組,只需涉及組中兩台磁碟機(一台數據盤,一台檢驗盤)即可。從而提高了小量數據的I/O速率。
6.RAID5(5級盤陣列)
RAID5是一種旋轉奇偶校驗獨立存取的陣列。它和RAID1、2、3、4各盤陣列的不同點,是它沒有固定的校驗盤,而是按某種規則把其冗餘的奇偶校驗信息均勻地分布在陣列所屬的所有磁碟上。於是在同一台磁碟機上既有數據信息也有校驗信息。這一改變解決了爭用校驗盤的問題,因此DAID5內允許在同一組內並發進行多個寫操作。所以RAID5即適於大數據量的操作,也適於各種事務處理。它是一種快速,大容量和容錯分布合理的磁碟陣列。
7.RAID6(6級盤陣列)
RAID6是一種雙維奇偶校驗獨立存取的磁碟陣列。它的冗餘的檢、糾錯信息均勻分布在所有磁碟上,而數據仍以大小可變的塊以交叉方式存於各盤。這類盤陣列可容許雙盤出錯。
8.RAID7(7級盤陣列)
RAID7是在RAID6的基礎上,採用了cache技術,它使得傳輸率和響應速度都有較大的提高。Cache是一種高速緩沖存儲器,即數據在寫入磁碟陣列以前,先寫入cache中。一般採用cache分塊大小和磁碟陣列中數據分塊大小相同,即一塊cache分塊對應一塊磁碟分塊。在寫入時將數據分別寫入兩個獨立的cache,這樣即使其中有一個cache出故障,數據也不會丟失。寫操作將直接在cache級響應,然後再轉到磁碟陣列。數據從cache寫到磁碟陣列時,同一磁軌的數據將在一次操作中完成,避免了不少塊數據多次寫的問題,提高了速度。在讀出時,主機也是直接從cache中讀出,而不是從陣列盤上讀取,減少與磁碟讀操作次數,這樣比較充分地利用了磁碟帶寬。
這樣cache和磁碟陣列技術的結合,彌補了磁碟陣列的不足(如分塊寫請求響應差等缺陷),從而使整個系統以高效、快速、大容量、高可靠以及靈活、方便的存儲系統提供給用戶,從而滿足了當前的技術發展的需要,尤其是多媒體系統的需要。
解析磁碟陣列的關鍵技術
存儲技術在計算機技術中受到廣泛關注,伺服器存儲技術更是業界關心的熱點。一談到伺服器存儲技術,人們幾乎立刻與SCSI(Small Computer Systems Interface)技術聯系在一起。盡管廉價的IDE硬碟在性能、容量等關鍵技術指標上已經大大地提高,可以滿足甚至超過原有的伺服器存儲設備的需求。但由於Internet的普及與高速發展,網路伺服器的規模也變得越來越大。同時,Internet不僅對網路伺服器本身,也對伺服器存儲技術提出了苛刻要求。無止境的市場需求促使伺服器存儲技術飛速發展。而磁碟陣列是伺服器存儲技術中比較成熟的一種,也是在市場上比較多見的大容量外設之一。
在高端,傳統的存儲模式無論在規模上,還是安全上,或是性能上,都無法滿足特殊應用日益膨脹的存儲需求。諸如存儲區域網(SAN)等新的技術或應用方案不斷涌現,新的存儲體系結構和解決方案層出不窮,伺服器存儲技術由直接連接存儲(DAS)向存儲網路技術(NAS)方面擴展。在中低端,隨著硬體技術的不斷發展,在強大市場需求的推動下,本地化的、基於直接連接的磁碟陣列存儲技術,在速度、性能、存儲能力等方面不斷地邁上新台階。並且,為了滿足用戶對存儲數據的安全、存取速度和超大的存儲容量的需求,磁碟陣列存儲技術也從講求技術創新、重視系統優化,以技術方案為主導的技術推動期逐漸進入了強調工業標准、著眼市場規模,以成熟產品為主導的產品普及期。
回顧磁碟陣列的發展歷程,一直和SCSI技術的發展緊密關聯,一些廠商推出的專有技術,如IBM的SSA(Serial Storage Architecture)技術等,由於兼容性和升級能力不盡如人意,在市場上的影響都遠不及SCSI技術廣泛。由於SCSI技術兼容性好,市場需求旺盛,使得SCSI技術發展很快。從最原始5MB/s傳輸速度的SCSI-1,一直發展到現在LVD介面的160MB/s傳輸速度的Ultra 160 SCSI,320MB/s傳輸速度的Ultra 320 SCSI介面也將在2001年出現(見表1)。從當前市場看,Ultra 3 SCSI技術和RAID(Rendant Array of Inexpensive Disks)技術還應是磁碟陣列存儲的主流技術。
SCSI技術
SCSI本身是為小型機(區別於微機而言)定製的存儲介面,SCSI協議的Version 1 版本也僅規定了5MB/s傳輸速度的SCSI-1的匯流排類型、介面定義、電纜規格等技術標准。隨著技術的發展,SCSI協議的Version 2版本作了較大修訂,遵循SCSI-2協議的16位數據帶寬,高主頻的SCSI存儲設備陸續出現並成為市場的主流產品,也使得SCSI技術牢牢地佔據了伺服器的存儲市場。SCSI-3協議則增加了能滿足特殊設備協議所需要的命令集,使得SCSI協議既適應傳統的並行傳輸設備,又能適應最新出現的一些串列設備的通訊需要,如光纖通道協議(FCP)、串列存儲協議(SSP)、串列匯流排協議等。漸漸地,「小型機」的概念開始弱化,「高性能計算機」和「伺服器」的概念在人們的心目中得到強化,SCSI一度成為用戶從硬體上來區分「伺服器」和PC機的一種標准。
通常情況下,用戶對SCSI匯流排的關心放在硬體上,不同的SCSI的工作模式意味著有不同的最大傳輸速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大傳輸速度並不代表設備正常工作時所能達到的平均訪問速度,也不意味著不同SCSI工作模式之間的訪問速度存在著必然的「倍數」關系。SCSI控制器的實際訪問速度與SCSI硬碟型號、技術參數,以及傳輸電纜長度、抗干擾能力等因素關系密切。提高SCSI匯流排效率必須關注SCSI設備端的配置和傳輸線纜的規范和質量。可以看出,Ultra 3模式下獲得的實際訪問速度還不到Ultra Wide模式下實際訪問速度的2倍。
一般說來,選用高速的SCSI硬碟、適當增加SCSI通道上連接硬碟數、優化應用對磁碟數據的訪問方式等,可以大幅度提高SCSI匯流排的實際傳輸速度。尤其需要說明的是,在同樣條件下,不同的磁碟訪問方式下獲得的SCSI匯流排實際傳輸速度可以相差幾十倍,對應用的優化是獲得高速存儲訪問時必須關注的重點,而這卻常常被一些用戶所忽視。按4KB數據塊隨機訪問6塊SCSI硬碟時,SCSI匯流排的實際訪問速度為2.74MB/s,SCSI匯流排的工作效率僅為匯流排帶寬的1.7%;在完全不變的條件下,按256KB的數據塊對硬碟進行順序讀寫,SCSI匯流排的實際訪問速度為141.2MB/s,SCSI匯流排的工作效率高達匯流排帶寬的88%。
隨著傳輸速度的提高,信號傳輸過程中的信號衰減和干擾問題顯得越來越突出,終結器在一定程度上可以起到降低信號波反射,改善信號質量的作用。同時,LVD(Low-Voltage Differential)技術的應用也越來越多。LVD工作模式是和SE(Single-Ended)模式相對應的,它可以很好地抵抗傳輸干擾,延長信號的傳輸距離。同時,Ultra 2 SCSI和Ultra 3 SCSI模式也通過採用專用的雙絞型SCSI電纜來提高信號傳輸的質量。
在磁碟陣列的概念中,大容量硬碟並不是指單個硬碟容量大,而是指將單個硬碟通過RAID技術,按RAID 級別組合成更大容量的硬碟。所以在磁碟陣列技術中,RAID技術是比較關鍵的,同時,根據所選用的RAID級別的不同,得到的「大硬碟」的功能也有不同。
RAID是一項非常成熟的技術,但由於其價格比較昂貴,配置也不方便,缺少相對專業的技術人員,所以應用並不十分普及。據統計,全世界75%的伺服器系統目前沒有配置RAID。由於伺服器存儲需求對數據安全性、擴展性等方面的要求越來越高,RAID市場的開發潛力巨大。RAID技術是一種工業標准,各廠商對RAID級別的定義也不盡相同。目前對RAID級別的定義可以獲得業界廣泛認同的只有4種,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是無數據冗餘的存儲空間條帶化,具有低成本、極高讀寫性能、高存儲空間利用率的RAID級別,適用於Video / Audio信號存儲、臨時文件的轉儲等對速度要求極其嚴格的特殊應用。但由於沒有數據冗餘,其安全性大大降低,構成陣列的任何一塊硬碟損壞都將帶來數據災難性的損失。所以,在RAID 0中配置4塊以上的硬碟,對於一般應用來說是不明智的。
RAID 1是兩塊硬碟數據完全鏡像,安全性好,技術簡單,管理方便,讀寫性能均好。但其無法擴展(單塊硬碟容量),數據空間浪費大,嚴格意義上說,不應稱之為「陣列」。
RAID 0+1綜合了RAID 0和RAID 1的特點,獨立磁碟配置成RAID 0,兩套完整的RAID 0互相鏡像。它的讀寫性能出色,安全性高,但構建陣列的成本投入大,數據空間利用率低,不能稱之為經濟高效的方案。
RAID 5是目前應用最廣泛的RAID技術。各塊獨立硬碟進行條帶化分割,相同的條帶區進行奇偶校驗(異或運算),校驗數據平均分布在每塊硬碟上。以n塊硬碟構建的RAID 5陣列可以有n-1塊硬碟的容量,存儲空間利用率非常高(見圖6)。任何一塊硬碟上數據丟失,均可以通過校驗數據推算出來。它和RAID 3最大的區別在於校驗數據是否平均分布到各塊硬碟上。RAID 5具有數據安全、讀寫速度快,空間利用率高等優點,應用非常廣泛,但不足之處是1塊硬碟出現故障以後,整個系統的性能大大降低。
對於RAID 1、RAID 0+1、RAID 5陣列,配合熱插拔(也稱熱可替換)技術,可以實現數據的在線恢復,即當RAID陣列中的任何一塊硬碟損壞時,不需要用戶關機或停止應用服務,就可以更換故障硬碟,修復系統,恢復數據,對實現HA(High Availability)高可用系統具有重要意義。
各廠商還在不斷推出各種RAID級別和標准。例如更高安全性的,從RAID控制器開始鏡像的RAID;更快讀寫速度的,為構成RAID的每塊硬碟配置CPU和Cache的RAID等等,但都不普及。用IDE硬碟構建RAID的技術是新出現的一個技術方向,對市場影響也較大,其突出優點就是構建RAID陣列非常廉價。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三個級別,最多支持4塊IDE硬碟。由於受IDE設備擴展性的限制,同時,也由於IDE設備也缺乏熱可替換的技術支持的原因,IDE RAID的應用還不多。
總之,發展是永恆的主題,在伺服器存儲技術領域也不例外。一方面,一些巨頭廠商嘗試推出新的概念或標准,來領導伺服器及存儲技術的發展方向,較有代表性的如Intel力推的IA-64架構及存儲概念;另一方面,致力於存儲的專業廠商以現有技術和工業標准為基礎,推動SCSI、RAID、Fibre Channel等基於現有存儲技術和方案快速更新和發展。在市場經濟條件下,檢驗技術發展的唯一標準是市場的認同。市場呼喚好的技術,而新的技術必須起到推動市場向前發展作用時才能被廣泛接受和承認。隨著高性能計算機市場的發展,高性能比、高可靠性、高安全性的存儲新技術也會不斷涌現。
現在市場上的磁碟陣列產品有很多,用戶在選擇磁碟陣列產品的過程中,也要根據自己的需求來進行選擇,現在列舉幾個磁碟陣列產品,同時也為需要磁碟陣列產品的用戶提供一些選擇。表2列出了幾種磁碟陣列的主要技術指標。
--------------------------------------------------------------------------------
小知識:磁碟陣列的可靠性和可用性
可靠性,指的是硬碟在給定條件下發生故障的概率。可用性,指的是硬碟在某種用途中可能用的時間。磁碟陣列可以改善硬碟系統的可靠性。從表3中可以看到RAID硬碟子系統與單個硬碟子系統的可靠性比較。
此外,在系統的可用性方面,單一硬碟系統的可用性比沒有數據冗餘的磁碟陣列要好,而冗餘磁碟陣列的可用性比單個硬碟要好得多。這是因為冗餘磁碟陣列允許單個硬碟出錯,而繼續正常工作;一個硬碟故障後的系統恢復時間也大大縮短(與從磁帶恢復數據相比);冗餘磁碟陣列發生故障時,硬碟上的數據是故障當時的數據,替換後的硬碟也將包含故障時的數據。但是,要得到完全的容錯性能,計算機硬碟子系統的其它部件也必須有冗餘。

⑶ 什麼是硬碟陣列

一般不叫硬碟陣列,叫磁碟陣列
磁碟陣列(,RAID),有「價格便宜且多餘的磁碟陣列」之意。原理是利用數組方式來作磁碟組,配合數據分散排列的設計,提升數據的安全性。磁碟陣列是由很多便宜、容量較小、穩定性較高、速度較慢磁碟,組合成一個大型的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。同時利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(ParityCheck)的觀念,在數組中任一顆硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
RAID技術主要包含RAID0~RAID7等數個規范,它們的側重點各不相同,常見的規范有如下幾種:
RAID0:RAID0連續以位或位元組為單位分割數據,並行讀/寫於多個磁碟上,因此具有很高的數據傳輸率,但它沒有數據冗餘,因此並不能算是真正的RAID結構。RAID0隻是單純地提高性能,並沒有為數據的可靠性提供保證,而且其中的一個磁碟失效將影響到所有數據。因此,RAID0不能應用於數據安全性要求高的場合。
RAID1:它是通過磁碟數據鏡像實現數據冗餘,在成對的獨立磁碟上產生互為備份的數據。當原始數據繁忙時,可直接從鏡像拷貝中讀取數據,因此RAID1可以提高讀取性能。RAID1是磁碟陣列中單位成本最高的,但提供了很高的數據安全性和可用性。當一個磁碟失效時,系統可以自動切換到鏡像磁碟上讀寫,而不需要重組失效的數據。
RAID0+1:也被稱為RAID10標准,實際是將RAID0和RAID1標准結合的產物,在連續地以位或位元組為單位分割數據並且並行讀/寫多個磁碟的同時,為每一塊磁碟作磁碟鏡像進行冗餘。它的優點是同時擁有RAID0的超凡速度和RAID1的數據高可靠性,但是CPU佔用率同樣也更高,而且磁碟的利用率比較低。
RAID2:將數據條塊化地分布於不同的硬碟上,條塊單位為位或位元組,並使用稱為「加重平均糾錯碼(海明碼)」的編碼技術來提供錯誤檢查及恢復。這種編碼技術需要多個磁碟存放檢查及恢復信息,使得RAID2技術實施更復雜,因此在商業環境中很少使用。
RAID3:它同RAID2非常類似,都是將數據條塊化分布於不同的硬碟上,區別在於RAID3使用簡單的奇偶校驗,並用單塊磁碟存放奇偶校驗信息。如果一塊磁碟失效,奇偶盤及其他數據盤可以重新產生數據;如果奇偶盤失效則不影響數據使用。RAID3對於大量的連續數據可提供很好的傳輸率,但對於隨機數據來說,奇偶盤會成為寫操作的瓶頸。
RAID4:RAID4同樣也將數據條塊化並分布於不同的磁碟上,但條塊單位為塊或記錄。RAID4使用一塊磁碟作為奇偶校驗盤,每次寫操作都需要訪問奇偶盤,這時奇偶校驗盤會成為寫操作的瓶頸,因此RAID4在商業環境中也很少使用。
RAID5:RAID5不單獨指定的奇偶盤,而是在所有磁碟上交叉地存取數據及奇偶校驗信息。在RAID5上,讀/寫指針可同時對陣列設備進行操作,提供了更高的數據流量。RAID5更適合於小數據塊和隨機讀寫的數據。RAID3與RAID5相比,最主要的區別在於RAID3每進行一次數據傳輸就需涉及到所有的陣列盤;而對於RAID5來說,大部分數據傳輸只對一塊磁碟操作,並可進行並行操作。在RAID5中有「寫損失」,即每一次寫操作將產生四個實際的讀/寫操作,其中兩次讀舊的數據及奇偶信息,兩次寫新的數據及奇偶信息。
RAID6:與RAID5相比,RAID6增加了第二個獨立的奇偶校驗信息塊。兩個獨立的奇偶系統使用不同的演算法,數據的可靠性非常高,即使兩塊磁碟同時失效也不會影響數據的使用。但RAID6需要分配給奇偶校驗信息更大的磁碟空間,相對於RAID5有更大的「寫損失」,因此「寫性能」非常差。較差的性能和復雜的實施方式使得RAID6很少得到實際應用。
RAID7:這是一種新的RAID標准,其自身帶有智能化實時操作系統和用於存儲管理的軟體工具,可完全獨立於主機運行,不佔用主機CPU資源。RAID7可以看作是一種存儲計算機(StorageComputer),它與其他RAID標准有明顯區別。除了以上的各種標准(如表1),我們可以如RAID0+1那樣結合多種RAID規范來構築所需的RAID陣列,例如RAID5+3(RAID53)就是一種應用較為廣泛的陣列形式。用戶一般可以通過靈活配置磁碟陣列來獲得更加符合其要求的磁碟存儲系統。
RAID5E(RAID5Enhencement):RAID5E是在RAID5級別基礎上的改進,與RAID5類似,數據的校驗信息均勻分布在各硬碟上,但是,在每個硬碟上都保留了一部分未使用的空間,這部分空間沒有進行條帶化,最多允許兩塊物理硬碟出現故障。看起來,RAID5E和RAID5加一塊熱備盤好象差不多,其實由於RAID5E是把數據分布在所有的硬碟上,性能會與RAID5加一塊熱備盤要好。當一塊硬碟出現故障時,有故障硬碟上的數據會被壓縮到其它硬碟上未使用的空間,邏輯盤保持RAID5級別。
RAID5EE:與RAID5E相比,RAID5EE的數據分布更有效率,每個硬碟的一部分空間被用作分布的熱備盤,它們是陣列的一部分,當陣列中一個物理硬碟出現故障時,數據重建的速度會更快。開始時RAID方案主要針對SCSI硬碟系統,系統成本比較昂貴。1993年,HighPoint公司推出了第一款IDE-RAID控制晶元,能夠利用相對廉價的IDE硬碟來組建RAID系統,從而大大降低了RAID的「門檻」。從此,個人用戶也開始關注這項技術,因為硬碟是現代個人計算機中發展最為「緩慢」和最缺少安全性的設備,而用戶存儲在其中的數據卻常常遠超計算機的本身價格。在花費相對較少的情況下,RAID技術可以使個人用戶也享受到成倍的磁碟速度提升和更高的數據安全性,現在個人電腦市場上的IDE-RAID控制晶元主要出自HighPoint和Promise公司,此外還有一部分來自AMI公司。面向個人用戶的IDE-RAID晶元一般只提供了RAID0、RAID1和RAID0+1(RAID10)等RAID規范的支持,雖然它們在技術上無法與商用系統相提並論,但是對普通用戶來說其提供的速度提升和安全保證已經足夠了。隨著硬碟介面傳輸率的不斷提高,IDE-RAID晶元也不斷地更新換代,晶元市場上的主流晶元已經全部支持ATA100標准,而HighPoint公司新推出的HPT372晶元和Promise最新的PDC20276晶元,甚至已經可以支持ATA133標準的IDE硬碟。在主板廠商競爭加劇、個人電腦用戶要求逐漸提高的今天,在主板上板載RAID晶元的廠商已經不在少數,用戶完全可以不用購置RAID卡,直接組建自己的磁碟陣列,感受磁碟狂飆的速度。
RAID50:RAID50是RAID5與RAID0的結合。此配置在RAID5的子磁碟組的每個磁碟上進行包括奇偶信息在內的數據的剝離。每個RAID5子磁碟組要求三個硬碟。RAID50具備更高的容錯能力,因為它允許某個組內有一個磁碟出現故障,而不會造成數據丟失。而且因為奇偶位分部於RAID5子磁碟組上,故重建速度有很大提高。優勢:更高的容錯能力,具備更快數據讀取速率的潛力。需要注意的是:磁碟故障會影響吞吐量。故障後重建信息的時間比鏡像配置情況下要長。

⑷ 硬碟陣列怎麼做

第一步
1備份好硬碟中的數據
2准備好一張帶Fdisk與Format命令的Windows 98啟動盤[軟盤或者帶啟動的98安裝盤都行]
第二步
將兩塊硬碟的跳線設置為Master,分別接上IDE3、IDE4口(它們由主板上的HighPoint370晶元控制)順序不考慮
第三步
對BIOS進行設置,打開ATA RAID CONTROLLER。我的板子是進入INTEGRATED PERIPHERALS選項並開啟ATA100 RAID IDE CONTROLLER 最後設置軟碟機或光碟機作為首選項。
第四步
接下來的設置步驟是創建RAID 0的核心內容。
1.系統BIOS設置完成以後重啟電腦,開機檢測時將不會再報告發現硬碟。
2.磁碟的管理將由HighPoint 370晶元接管。
3.下面是非常關鍵的HighPoint 370 BIOS設置,在HighPoint 370磁碟掃描界面同時按下「Ctrl」和「H」。
4.進入HighPoint 370 BIOS設置界面後第一個要做的工作就是選擇「Create RAID」創建RAID。
5.在「Array Mode(陣列模式)」中進行RAID模式選擇,這里能夠看到RAID 0、RAID 1、RAID 0+1和Span的選項 選擇RAID 0項。
6.RAID模式選擇完成會自動退出到上一級菜單進行「Disk Drives(磁碟驅動器)」選擇 直接回車就行了。
7.下一項設置是條帶單位大小,預設值為64kB不用修改
8.接著是「Start Create(開始創建)」的選項,在你按下「Y」之前,確認硬碟數據是不是備份好了 一旦開始創建RAID,硬碟上的所有數據都會被清除。
9.創建完成以後是指定BOOT啟動盤,任選一個吧。
按「Esc」鍵退出,當然少不了按下「Y」來確認一下。
第五步
再次重啟電腦以後,看到「Striping(RAID 0)for Array #0」字樣了。這時候兩塊硬碟就被做成列陣了 就象對一塊盤格式化一樣 插入啟動盤來格式化和分區
第六步
對於採用RAID的電腦,操作系統的安裝和普通情況下不一樣, Windows XP完成第一步「文件復制」重啟以後,安裝程序會以英文提示「按下F6安裝SCSI設備或RAID磁碟」,這時候就要按下F6 出現安裝選擇,選擇「S」安裝RAID控制晶元驅動 按下「S」鍵會提示插入RAID晶元驅動盤。回車,安裝程序自動搜索驅動盤上的程序,選擇「WinXP」那一個並回車。
接下來是正常的系統安裝,和普通安裝沒有任何區別。

安裝完畢 進入系統 RAID 0 就安裝好了

⑸ 個人電腦需要用磁碟陣列嗎

個人電腦一般不需要用到磁碟陣列。
磁碟陣列一般是用於伺服器,為了提供更高的速度和更安全的數據存儲備份。個人電腦使用磁碟陣列,速度提升效果不明顯,還不如使用固態硬碟來得直接。而且個人電腦對數據安全的要求不高,重要資料只需要定期備份到備份硬碟或者是移動硬碟上基本就高枕無憂。

⑹ 一台電腦多個硬碟,硬碟陣列怎麼做

可以的。 1,一般情況下,現在的電腦主板有4個插孔,樓主打開電腦主機箱後就可看到。 2,四個插孔中,其中一個已經插上購買電腦時的硬碟,一個插著光碟機,兩個什麼也沒有插。 3,現實生活中,因為某些需要,要增加硬碟數量,直接插到空著的插孔上就可以了。 4,如果是老式主板,則只有兩個插孔。那麼,可以拔掉光碟機插上硬碟。

⑺ 列陣硬碟

你的主板支持RAID幾?用磁碟陣列做數據冗餘很浪費空間哦。
具體操作參考主板說明書,應該很詳細

⑻ 怎樣組建磁碟列陣

近,剛剛幫朋友裝了一台電腦,朋友選擇了160GB的SATA硬碟。之前,朋友有一台老的電腦,由於經常在網上下載影片和游戲,因此對硬碟進行了幾次升級,分幾次購買了幾塊80GB PATA硬碟。由於朋友的那台舊電腦實在沒法再用,因此打算把幾塊硬碟組合起來,裝進新配的電腦中使用。因此朋友想組成RAID磁碟陣烈進行使用,以提高機器性能和增大磁碟的容量。那麼什麼是RAID呢?如何實現RAID功能?PATA與SATA硬碟能組建RAID磁碟陣列嗎?於是筆者進行了整理搜集,得文如下:
一、什麼是RAID?其具備哪些常用的工具模式?

即然提到了RAID磁碟陣列,那麼我們就先來了解一下什麼是RAID?所謂的RAID,是Rendant Arrays of Independent Disks的簡稱,中文為廉價冗餘磁碟陣列。由1987年由加州大學伯克利分校提出的,初衷是為了將較廉價的多個小磁碟進行組合來替代價格昂貴的大容量磁碟,希望單個磁碟損壞後不會影響到其它磁碟的繼續使用,使數據更加的安全。RAID作為一種廉價的磁碟冗餘陣列,能夠提供一個獨立的大型存儲設備解決方案。在提高硬碟容量的同時,還能夠充分提高硬碟的速度,使數據更加安全,更加易於磁碟的管理。

了解RAID基本定義以後,我們再來看看RAID的幾種常見工作模式。

1、RAID 0

RAID 0是最早出現的RAID模式,即Data Stripping數據分條技術。RAID 0是組建磁碟陣列中最簡單的一種形式,只需要2塊以上的硬碟即可,成本低,可以提高整個磁碟的性能和吞吐量。RAID 0沒有提供冗餘或錯誤修復能力,是實現成本是最低的。

RAID 0最簡單的實現方式就是把N塊同樣的硬碟用硬體的形式通過智能磁碟控制器或用操作系統中的磁碟驅動程序以軟體的方式串聯在一起創建一個大的卷集。在使用中電腦數據依次寫入到各塊硬碟中,它的最大優點就是可以整倍的提高硬碟的容量。如使用了三塊80GB的硬碟組建成RAID 0模式,那麼磁碟容量就會是240GB。其速度方面,各單獨一塊硬碟的速度完全相同。最大的缺點在於任何一塊硬碟出現故障,整個系統將會受到破壞,可靠性僅為單獨一塊硬碟的1/N。

為了解決這一問題,便出一了RAID 0的另一種模式。即在N塊硬碟上選擇合理的帶區來創建帶區集。其原理就是將原先順序寫入的數據被分散到所有的四塊硬碟中同時進行讀寫。四塊硬碟的並行操作使同一時間內磁碟讀寫的速度提升了4倍。

在創建帶區集時,合理的選擇帶區的大小非常重要。如果帶區過大,可能一塊磁碟上的帶區空間就可以滿足大部分的I/O操作,使數據的讀寫仍然只局限在少數的一、兩塊硬碟上,不能充分的發揮出並行操作的優勢。另一方面,如果帶區過小,任何I/O指令都可能引發大量的讀寫操作,佔用過多的控制器匯流排帶寬。因此,在創建帶區集時,我們應當根據實際應用的需要,慎重的選擇帶區的大小。

帶區集雖然可以把數據均勻的分配到所有的磁碟上進行讀寫。但如果我們把所有的硬碟都連接到一個控制器上的話,可能會帶來潛在的危害。這是因為當我們頻繁進行讀寫操作時,很容易使控制器或匯流排的負荷超載。為了避免出現上述問題,建議用戶可以使用多個磁碟控制器。最好解決方法還是為每一塊硬碟都配備一個專門的磁碟控制器。

雖然RAID 0可以提供更多的空間和更好的性能,但是整個系統是非常不可靠的,如果出現故障,無法進行任何補救。所以,RAID 0一般只是在那些對數據安全性要求不高的情況下才被人們使用。

2、RAID 1

RAID 1稱為磁碟鏡像,原理是把一個磁碟的數據鏡像到另一個磁碟上,也就是說數據在寫入一塊磁碟的同時,會在另一塊閑置的磁碟上生成鏡像文件,在不影響性能情況下最大限度的保證系統的可靠性和可修復性上,只要系統中任何一對鏡像盤中至少有一塊磁碟可以使用,甚至可以在一半數量的硬碟出現問題時系統都可以正常運行,當一塊硬碟失效時,系統會忽略該硬碟,轉而使用剩餘的鏡像盤讀寫數據,具備很好的磁碟冗餘能力。雖然這樣對數據來講絕對安全,但是成本也會明顯增加,磁碟利用率為50%,以四塊80GB容量的硬碟來講,可利用的磁碟空間僅為160GB。另外,出現硬碟故障的RAID系統不再可靠,應當及時的更換損壞的硬碟,否則剩餘的鏡像盤也出現問題,那麼整個系統就會崩潰。更換新盤後原有數據會需要很長時間同步鏡像,外界對數據的訪問不會受到影響,只是這時整個系統的性能有所下降。因此,RAID 1多用在保存關鍵性的重要數據的場合。

RAID 1主要是通過二次讀寫實現磁碟鏡像,所以磁碟控制器的負載也相當大,尤其是在需要頻繁寫入數據的環境中。為了避免出現性能瓶頸,使用多個磁碟控制器就顯得很有必要。

3、RAID0+1

從RAID 0+1名稱上我們便可以看出是RAID0與RAID1的結合體。在我們單獨使用RAID 1也會出現類似單獨使用RAID 0那樣的問題,即在同一時間內只能向一塊磁碟寫入數據,不能充分利用所有的資源。為了解決這一問題,我們可以在磁碟鏡像中建立帶區集。因為這種配置方式綜合了帶區集和鏡像的優勢,所以被稱為RAID 0+1。把RAID0和RAID1技術結合起來,數據除分布在多個盤上外,每個盤都有其物理鏡像盤,提供全冗餘能力,允許一個以下磁碟故障,而不影響數據可用性,並具有快速讀/寫能力。RAID0+1要在磁碟鏡像中建立帶區集至少4個硬碟。

由於我們此次只是介紹家用台式機如何組建RAID磁碟陣列功能,目前主流的主板也只是提供這三種組建模式,因此其它諸如服務等的高級RAID模式,這里我們將不再過多的介紹。

二、主板晶元組RAID控制晶元介紹

Intel南橋晶元ICH5R、ICH6R集成有SATA-RAID控制器,但僅支持SATA-RAID,不支持PATA-RAID。Intel採用的是橋接技術,就是把SATA-RAID控制器橋接到IDE控制器,因此可以通過BIOS檢測SATA硬碟,並且通過BIOS設置SATA-RAID。當連接SATA硬碟而又不做RAID時,是把SATA硬碟當作PATA硬碟處理的,安裝OS時也不需要驅動軟盤,在OS的設備管理器內也看不到SATA-RAID控制器,看到的是IDE ATAPI控制器,而且多了兩個IDE通道(由兩個SATA通道橋接的)。只有連接兩個SATA硬碟,且作SATA-RAID時才使用SATA-RAID控制器,安裝OS時需要需要驅動軟盤,在OS的設備管理器內可以看到SATA-RAID控制器。安裝ICH5R、ICH6R的RAID IAA驅動後,可以通過IAA程序查看RAID盤的性能參數。

VIA南橋晶元VT8237、VT8237R的SATA-RAID設計與Intel不同,它是把一個SATA-RAID控制器集成到8237南橋內,與南橋里的IDE控制器沒有關系。當然這個SATA-RAID控制器也不見得是原生的SATA模式,因為傳輸速度也沒有達到理想的SATA性能指標。BIOS不負責檢測SATA硬碟,所以在BIOS里看不到SATA硬碟。SATA硬碟的檢測和RAID設置需要通過SATA-RAID控制器自己BootROM(也可以叫SATA-RAID控制器的BIOS)。所以BIOS自檢後會啟動一個BootROM檢測SATA硬碟,檢測到SATA硬碟後就顯示出硬碟信息,此時按快捷鍵Tab就可以進入BootROM設置SATA-RAID。在VIA的VT8237南橋的主板上使用SATA硬碟,無論是否做RAID安裝OS時都需要驅動軟盤,在OS的設備管理器內可以看到SATA-RAID控制器。VIA的晶元也只是集成了SATA-RAID控制器。

NVIDIA的nForce2/ nForce3/ nForce4晶元組的SATA/IDE/RAID處理方式是集Intel和VIA的優點於一身。第一是把SATA/IDE/RAID控制器橋接在一起,在不做RAID時,安裝XP/2000也不需要任何驅動。第二是在BIOS里的SATA硬碟不像Intel那樣需要特別設置,接上SATA硬碟BIOS就可以檢測到。第三是不僅SATA硬碟可以組成RAID,PATA硬碟也可以組成RAID,PATA硬碟與SATA硬碟也可以組成RAID。這給需要RAID的用戶帶來極大的方便,Intel的ICH5R、ICH6R,VIA的VT8237都不支持PATA的IDE RAID。

三、NVIDIA晶元組BIOS設置和RAID設置簡單介紹

nForce系列晶元組的BIOS里有關SATA和RAID的設置選項有兩處,都在Integrated Peripherals(整合周邊)菜單內。

SATA的設置項:Serial-ATA,設定值有[Enabled], [Disabled]。這項的用途是開啟或關閉板載Serial-ATA控制器。使用SATA硬碟必須把此項設置為[Enabled]。如果不使用SATA硬碟可以將此項設置為[Disabled],可以減少佔用的中斷資源。

RAID的設置項在Integrated Peripherals/Onboard Device(板載設備)菜單內,游標移到Onboard Device,按進入如子菜單:RAID Config就是RAID配置選項,游標移到RAID Config,按就進入如RAID配置菜單:

第一項IDE RAID是確定是否設置RAID,設定值有[Enabled], [Disabled]。如果不做RAID,就保持預設值[Disabled],此時下面的選項是不可設置的灰色。

如果做RAID就選擇[Enabled],這時下面的選項才變成可以設置的黃色。IDE RAID下面是4個IDE(PATA)通道,再下面是SATA通道。nForce2晶元組是2個SATA通道,nForce3/4晶元組是4個SATA通道。可以根據你自己的意圖設置,准備用哪個通道的硬碟做RAID,就把那個通道設置為[Enabled]。

設置完成就可退出保存BIOS設置,重新啟動。這里要說明的是,當你設置RAID後,該通道就由RAID控制器管理,BIOS的Standard CMOS Features里看不到做RAID的硬碟了。

BIOS設置後,僅僅是指定那些通道的硬碟作RAID,並沒有完成RAID的組建,前面說過做RAID的磁碟由RAID控制器管理,因此要由RAID控制器的RAID BIOS檢測硬碟,以及設置RAID模式。BIOS啟動自檢後,RAID BIOS啟動檢測做RAID的硬碟,檢測過程在顯示器上顯示,檢測到硬碟後留給用戶幾秒鍾時間,以便用戶按F 1 0 進入RAID BIOS Setup。

nForce晶元組提供的RAID(冗餘磁碟陣列)的模式共有下面四種:

RAID 0:硬碟串列方案,提高硬碟讀寫的速度。

RAID 1:鏡像數據的技術。

RAID 0+1:由RAID 0和RAID 1陣列組成的技術。

Spanning (JBOD):不同容量的硬碟組成為一個大硬碟。

四、操作系統安裝過程介紹

按F10進入RAID BIOS Setup,會出現NVIDIA RAID Utility -- Define a New Array(定義一個新陣列)。默認的設置是:RAID Mode(模式)--Mirroring(鏡像),Striping Block(串列塊)--Optimal(最佳)。

通過這個窗口可以定義一個新陣列,需要設置的項目有:選擇RAID Mode(RAID模式):Mirroring(鏡像)、Striping(串列)、Spanning(捆綁)、Stripe Mirroring(串列鏡像)。

設置Striping Block(串列塊):4 KB至128 KB/Optimal

指定RAID Array(RAID陣列)所使用的磁碟

用戶可以根據自己的需要設置RAID模式,串列塊大小和RAID陣列所使用的磁碟。其中串列塊大小最好用默認的Optimal。RAID陣列所使用的磁碟通過游標鍵→添加。

做RAID的硬碟可以是同一通道的主/從盤,也可以是不同通道的主/從盤,建議使用不同通道的主/從盤,因為不同通道的帶寬寬,速度快。Loc(位置)欄顯示出每個硬碟的通道/控制器(0-1)/主副狀態,其中通道0是PATA,1是SATA;控制器0是主,1是從;M是主盤,S是副盤。分配完RAID陣列磁碟後,按F7。出現清除磁碟數據的提示。按Y清除硬碟的數據,彈出Array List窗口:如果沒有問題,可以按Ctrl-X保存退出,也可以重建已經設置的RAID陣列。至此RAID建立完成,系統重啟,可以安裝OS了。

安裝Windows XP系統,安裝系統需要驅動軟盤,主板附帶的是XP用的,2000的需要自己製作。從光碟機啟動Windows XP系統安裝盤,在進入藍色的提示屏幕時按F6鍵,告訴系統安裝程序:需要另外的存儲設備驅動。當安裝程序拷貝一部分設備驅動後,停下來提示你敲S鍵,指定存儲設備驅動:

系統提示把驅動軟盤放入軟碟機,按提示放入軟盤後,敲回車。系統讀取軟盤後,提示你選擇驅動。nForce的RAID驅動與Intel和VIA的不同,有兩個:NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller都要安裝。

第一次選擇NVIDIA RAID CLASS DRIVER,敲回車系統讀入,再返回敲S鍵提示界面,此時再敲S鍵,然後選擇NVIDIA Nforce Storage Controller,敲回車,系統繼續拷貝文件,然後返回到下面界面。

在這個界面里顯示出系統已經找到NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller,可以敲回車繼續。

系統從軟盤拷貝所需文件後重啟,開始檢測RAID盤,找到後提示設置硬碟。此時用戶可以建立一個主分區,並格式化,然後系統向硬碟拷貝文件。在系統安裝期間不要取出軟盤,直到安裝完成。

剩餘的磁碟分區等安裝完系統後,我們可以用XP的磁碟管理器分區格式化。用XP的磁碟管理器分區,等於/小於20GB的邏輯盤可以格式化為FAT32格式。大於20GB的格式化為NTF格式。

⑼ 什麼是電腦的磁碟陣列

磁碟陣列(Rendant
Arrays
of
Inexpensive
Disks,RAID),有「價格便宜且多餘的磁碟陣列」之意。原理是利用數組方式來作磁碟組,配合數據分散排列的設計,提升數據的安全性。磁碟陣列是由很多便宜、容量較小、穩定性較高、速度較慢磁碟,組合成一個大型的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。同時利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(Parity
Check)的觀念,在數組中任一顆硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。

閱讀全文

與電腦硬碟列陣相關的資料

熱點內容
修改手機圖標的軟體 瀏覽:292
電腦一待機再點開就連不上無線網 瀏覽:969
電腦組文件夾 瀏覽:252
電腦如何清空只留系統win10 瀏覽:517
電腦突然斷電文件沒保存 瀏覽:239
筆記本電腦有什麼用啊 瀏覽:732
19寸筆記本電腦尺寸 瀏覽:652
電腦上輸入法為什麼忽然只有拼音 瀏覽:452
電腦毛衣編織機器多少錢一台 瀏覽:139
台式電腦無線網卡沒有無線網路 瀏覽:833
英雄聯盟手游電腦上怎麼設置按鍵 瀏覽:255
聯想電腦不顯示wifi網路列表 瀏覽:170
電腦盤如何共享文件夾 瀏覽:956
卡片電腦配置單 瀏覽:847
蘋果電腦玩游戲哪個好用 瀏覽:882
2016年筆記本電腦排行 瀏覽:786
電腦如何安裝塞班系統 瀏覽:580
電腦用什麼錄音軟體好 瀏覽:724
安裝完內存條電腦打不開 瀏覽:329
大學做筆記本電腦 瀏覽:900