通俗的說,串口形容一下就是 一條車道,而並口就是有8個車道
同一時刻能傳送8位(一個位元組)數據。
但是並不是並口快,由於8位通道之間的互相干擾。傳輸受速度就受到了限制。而且當傳輸出錯時,要同時重新傳8個位的數據。串口基本沒有干擾,傳輸出錯後重發一位就可以了。所以快比並口快。串口硬碟就是這樣被人們重視的。
串口硬碟與並口硬碟數據線的區別,如下圖:
串口和並口的區別
串口硬碟」與「並口硬碟」 區別
隨著技術的成熟,越來越多的主板和硬碟都開始支持SATA(串列ATA),SATA介面逐漸有取代傳統的PATA(並行ATA)的趨勢。那麼SATA和PATA在傳輸模式上有何區別,SATA相對PATA又有何優勢呢?
何謂並行ATA
ATA其實是IDE設備的介面標准,大部分硬碟、光碟機、軟碟機等等都使用的是ATA介面。譬如現在絕大部分的朋友用的都是並行ATA介面的硬碟,應該對它80針排線的介面是再熟悉不過了吧?平常我們說到硬碟介面,就不得不提到什麼Ultra-ATA/100、Ultra-ATA/133,這表示什麼呢?這告訴我們該硬碟介面的最大傳輸速率為100MB/s和133MB/s,且硬碟是以並行的方式進行數據傳輸,所以我們也把這類硬碟稱為並行ATA。
何謂串列ATA
串列ATA全稱是Serial ATA,它是一種新的介面標准。與並行ATA的主要不同就在於它的傳輸方式。它和並行傳輸不同,它只有兩對數據線,採用點對點傳輸,以比並行傳輸更高的速度將數據分組傳輸。現在的串列ATA介面傳輸速率為150MB/s,而且這個值將會迅速增長。
串列ATA和並行ATA傳輸的區別
舉個比較誇張的例子,A、B兩支隊伍在比賽搬運包裹,A代表並行ATA,B代表串列ATA。
比賽開始,A派出了40個人用人力搬運包裹,而B只派出去了一輛貨車來搬運。在一個來回里他們搬運的包裹數量都相同,大家可以很清楚最後的結果,當然是用貨車搬運的B隊先把包裹運完,因為貨車的速度比人步行的速度快得多多了。同樣,串列傳輸比並行傳輸的速率高就類似這個道理。
回到現實中來,現在的並行ATA介面使用的是16位的雙向匯流排,在1個數據傳輸周期內可以傳輸4個位元組的數據;而串列ATA使用的8位匯流排,每個時鍾周期能傳送1個位元組。這兩種傳輸方式除了在每個時鍾周期內傳輸速度不一樣之外,在傳輸的模式上也有根本的區別,串列ATA數據是一個接著一個數據包進行傳輸,而並行ATA則是一次同時傳送數個數據包,雖然表面上一個周期內並行ATA傳送的數據更多,但是我們不要忘了,串列ATA的時鍾頻率要比並行的時鍾頻率高很多,也就是說,單位時間內,進行數據傳輸的周期數目更多,所以串列ATA的傳輸率高於並行ATA的傳輸率,並且未來還有更大的提升空間。
為什麼我們要採用串列ATA介面
這個回答很簡單,當然是為了獲得更高的數據傳輸率。隨著當前設備需求的數據傳輸率越來越高,介面的工作頻率也越來越高,並行ATA介面逐漸暴露出一些設計上的「硬傷」,其中最致命的就是並行線路的信號干擾。由於傳統並行ATA採用並行的匯流排傳輸數據,必須要求各個線路上數據同步,如果數據不能同步,就會出現反復讀取數據,導致性能的下降,甚至導致讀取數據不穩定。
而採用排線設計的數據線,正是數據讀取無法更快的「罪魁禍首」。由於並排的高速信號在傳輸時,會在每條電纜的周圍產生微弱的電磁場,進而影響到其他數據線中的數據傳遞,還會因為線纜的長度和電壓的變化而不斷變化,隨著匯流排頻率的提升,磁場的強度也越來越大,信號干擾的影響也越來越明顯。
從理論上說串列傳輸的工作頻率可以無限提高,串列ATA就是通過提高工作頻率來提升介面傳輸速率的。因此串列ATA可以實現更高的傳輸速率,而並行ATA在沒有有效地解決信號串擾問題之前,則很難達到這樣高的傳輸速率。
並行ATA介面在匯流排頻率方面受到其設計的制約,並不能一味地提升,而隨著對數據傳輸率的要求越來越高,目前最快的並行ATA介面ATA133的頻率為33MHz,這個幾乎已經達到了並行介面的極限,再繼續改造線路已不太現實。所以推出新的介面勢在必行。
除了傳輸率較高之外,SATA還有哪些優點呢?
1.數據更可靠
在校驗方面,並行ATA匯流排只是簡單的CRC校驗,一旦接收方發現數據傳輸出現問題,就會自行將這些數據丟棄、然後要求重發,如果數據信號相互干擾過大,就會嚴重影響硬碟的性能。
而串列ATA既對命令進行CRC校驗,也對數據分組進行CRC校驗,以此提高匯流排的可靠性。
2.連線更簡單
在數據線方面,並行ATA採用80針的排線,串列ATA由於採用點對點方式傳輸數據,所以只需要4條線路即可完成發送和接收功能,加上另外的三條地線,一共只需要7條的物理連線就可滿足數據傳輸的需要。由於傳輸數據線較少,使得SATA在物理線路的電氣性能方面的干擾大大減小,這也保證了未來磁碟傳輸率進一步的提升。
和並行ATA相比,串列ATA的數據線更細小,這也使得機箱內部的連線比較容易整理,有助於機箱內部空氣的流通,使得機箱內部的散熱更好。同樣,串列ATA還有採用非排針腳設計的介面和支持熱插拔功能等優點。
串列ATA推出之後,並行ATA還會存在嗎
總的說來,串列ATA的優勢是很明顯的。當然,目前還有一些相對比較低速的設備在使用並行ATA,如光碟機、刻錄機等設備,並行ATA的傳輸率已經可以滿足的需要,所以,並行和串列會在很長一段時間內並存。當然,串列ATA支持所有的ATA設備,也可支持光碟機等設備,但是串列ATA目前會先運用在硬碟上,未來將會支持更多的存儲設備。
B. 最近10年的台式電腦內硬碟一般多大2.5寸還是3.5寸,串口的多還是並口的多80G以上容量是不是都串口SATA
一,台式機硬碟一般都是3.5寸的,筆記本2.5寸的
二,串口的多,並口的都是屬於老的硬碟了,現在電腦基本上沒有並口硬碟介面了
三。80G以上的硬碟不全是串口的SATA硬碟也有並口老式硬碟也有SCSI硬碟,還有SAS介面的硬碟
C. 電腦硬碟串口與並口的區別在那裡/
串口硬碟和並口硬碟主要的區別在於硬碟於主板通信的方式不一樣,物理介面不一樣。
SATA硬碟,也就是一般所說的串口硬碟,使用的是高頻率的串列通信方式,其典型的介面外觀如下圖:
D. 電腦硬碟有串口和並口這兩種區別是什麼哪種更好
數據線,電源線介面都不一樣.
2個的傳輸速度不一樣串口(SATA介面)能達到600/s 數據線也不一樣.串口電源是在數據介面上插的支持熱插拔不過要注意有順序的. 並口的速度慢```````````
一個並行傳輸一個串列傳輸。簡單點說並行是多通道低頻率,串列是單通道高頻率。並行干擾嚴重效率低下,所以現在相串列轉移。
硬碟介面是硬碟與主機系統間的連接部件,作用是在硬碟緩存和主機內存之間傳輸數據。不同的硬碟介面決定著硬碟與計算機之間的連接速度,在整個系統中,硬碟介面的優劣直接影響著程序運行快慢和系統性能好壞。不同的硬碟介面採用不同的數據傳輸規范,所能提供的數據傳輸速度也不相同。傳輸規范是硬碟最為重要的參數之一.
IDE的英文全稱為「Integrated Drive Electronics」,即「電子集成驅動器」,它的本意是指把「硬碟控制器」與「盤體」集成在一起的硬碟驅動器。把盤體與控制器集成在一起的做法減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,因為硬碟生產廠商不需要再擔心自己的硬碟是否與其它廠商生產的控制器兼容。對用戶而言,硬碟安裝起來也更為方便。IDE這一介面技術從誕生至今就一直在不斷發展,性能也不斷的提高,其擁有的價格低廉、兼容性強的特點,為其造就了其它類型硬碟無法替代的地位。
IDE代表著硬碟的一種類型,但在實際的應用中,人們也習慣用IDE來稱呼最早出現IDE類型硬碟ATA-1,這種類型的介面隨著介面技術的發展已經被淘汰了,而其後發展分支出更多類型的硬碟介面,比如ATA、Ultra ATA、DMA、Ultra DMA等介面都屬於IDE硬碟。
SATA是Serial ATA的縮寫,即串列ATA。這是一種完全不同於並行ATA的新型硬碟介面類型,由於採用串列方式傳輸數據而得名。SATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
與並行ATA相比,SATA具有比較大的優勢。首先,Serial ATA以連續串列的方式傳送數據,可以在較少的位寬下使用較高的工作頻率來提高數據傳輸的帶寬。Serial ATA一次只會傳送1位數據,這樣能減少SATA介面的針腳數目,使連接電纜數目變少,效率也會更高。實際上,Serial ATA 僅用四支針腳就能完成所有的工作,分別用於連接電纜、連接地線、發送數據和接收數據,同時這樣的架構還能降低系統能耗和減小系統復雜性。其次,Serial ATA的起點更高、發展潛力更大,Serial ATA 1.0定義的數據傳輸率可達150MB/sec,這比目前最塊的並行ATA(即ATA/133)所能達到133MB/sec的最高數據傳輸率還高,而在已經發布的Serial ATA 2.0的數據傳輸率將達到300MB/sec,最終Serial ATA 3.0將實現600MB/sec的最高數據傳輸率。
在此有必要對Serial ATA的數據傳輸率作一下說明。就串列通訊而言,數據傳輸率是指串列介面數據傳輸的實際比特率,Serial ATA 1.0的傳輸率是1.5Gbps,Serial ATA 2.0的傳輸率是3.0Gbps。與其它高速串列介面一樣,Serial ATA介面也採用了一套用來確保數據流特性的編碼機制,這套編碼機制將原本每位元組所包含的8位數據(即1Byte=8bit)編碼成10位數據(即1Byte=10bit),這樣一來,Serial ATA介面的每位元組串列數據流就包含了10位數據,經過編碼後的Serial ATA傳輸速率就相應地變為Serial ATA實際傳輸速率的十分之一,所以1.5Gbps=150MB/sec,而3.0Gbps=300MB/sec。
SATA的物理設計,可說是以Fibre Channel(光纖通道)作為藍本,所以採用四芯接線;需求的電壓則大幅度減低至250mV(最高500mV),較傳統並行ATA介面的5V少上200倍!因此,廠商可以給Serial ATA硬碟附加上高級的硬碟功能,如熱插拔(Hot Swapping)等。更重要的是,在連接形式上,除了傳統的點對點(Point-to-Point)形式外,SATA還支持「星形」連接,這樣就可以給RAID這樣的高級應用提供設計上的便利;在實際的使用中,SATA的主機匯流排適配器(HBA,Host Bus Adapter)就好像網路上的交換機一樣,可以實現以通道的形式和單獨的每個硬碟通訊,即每個SATA硬碟都獨佔一個傳輸通道,所以不存在象並行ATA那樣的主/從控制的問題。