硬碟的DOS管理結構
1.磁軌,扇區,柱面和磁頭數
硬碟最基本的組成部分是由堅硬金屬材料製成的塗以磁性介質的碟片,不同容量硬碟的碟片數不等。每個碟片有兩面,都可
記錄信息。碟片被分成許多扇形的區域,每個區域叫一個扇區,每個扇區可存儲128×2的N次方(N=0.1.2.3)位元組信息。在DOS
中每扇區是128×2的2次方=512位元組,碟片表面上以碟片中心為圓心,不同半徑的同心圓稱為磁軌。硬碟中,不同碟片相同半徑
的磁軌所組成的圓柱稱為柱面。磁軌與柱面都是表示不同半徑的圓,在許多場合,磁軌和柱面可以互換使用,我們知道,每個磁
盤有兩個面,每個面都有一個磁頭,習慣用磁頭號來區分。扇區,磁軌(或柱面)和磁頭數構成了硬碟結構的基本參數,幫這些
參數可以得到硬碟的容量,基計算公式為:
存儲容量=磁頭數×磁軌(柱面)數×每道扇區數×每扇區位元組數
要點:(1)硬碟有數個碟片,每碟片兩個面,每個面一個磁頭
(2)碟片被劃分為多個扇形區域即扇區
(3)同一碟片不同半徑的同心圓為磁軌
(4)不同碟片相同半徑構成的圓柱面即柱面
(5)公式:存儲容量=磁頭數×磁軌(柱面)數×每道扇區數×每扇區位元組數
(6)信息記錄可表示為:××磁軌(柱面),××磁頭,××扇區
2.簇
「簇」是DOS進行分配的最小單位。當創建一個很小的文件時,如是一個位元組,則它在磁碟上並不是只佔一個位元組的空間,
而是佔有整個一簇。DOS視不同的存儲介質(如軟盤,硬碟),不同容量的硬碟,簇的大小也不一樣。簇的大小可在稱為磁碟
參數塊(BPB)中獲取。簇的概念僅適用於數據區。
本點:(1)「簇」是DOS進行分配的最小單位。
(2)不同的存儲介質,不同容量的硬碟,不同的DOS版本,簇的大小也不一樣。
㈡ 關於電腦硬碟的基礎知識
硬碟介面是硬碟與主機系統間的連接部件,作用是在硬碟緩存和主機內存之間傳輸數據。不同的硬碟介面決定著硬碟與計算機之間的連接速度,在整個系統中,硬碟介面的優劣直接影響著程序運行快慢和系統性能好壞。從整體的角度上,硬碟介面分為IDE、SATA、SCSI和光纖通道四種,IDE介面硬碟多用於家用產品中,也部分應用於伺服器,SCSI介面的硬碟則主要應用於伺服器市場,而光纖通道只在高端伺服器上,價格昂貴。SATA是種新生的硬碟介面類型,還正出於市場普及階段,在家用市場中有著廣泛的前景。在IDE和SCSI的大類別下,又可以分出多種具體的介面類型,又各自擁有不同的技術規范,具備不同的傳輸速度,比如ATA100和SATA;Ultra160 SCSI和Ultra320 SCSI都代表著一種具體的硬碟介面,各自的速度差異也較大。
IDE
IDE的英文全稱為「Integrated Drive Electronics」,即「電子集成驅動器」,它的本意是指把「硬碟控制器」與「盤體」集成在一起的硬碟驅動器。把盤體與控制器集成在一起的做法減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,因為硬碟生產廠商不需要再擔心自己的硬碟是否與其它廠商生產的控制器兼容。對用戶而言,硬碟安裝起來也更為方便。IDE這一介面技術從誕生至今就一直在不斷發展,性能也不斷的提高,其擁有的價格低廉、兼容性強的特點,為其造就了其它類型硬碟無法替代的地位。
IDE代表著硬碟的一種類型,但在實際的應用中,人們也習慣用IDE來稱呼最早出現IDE類型硬碟ATA-1,這種類型的介面隨著介面技術的發展已經被淘汰了,而其後發展分支出更多類型的硬碟介面,比如ATA、Ultra ATA、DMA、Ultra DMA等介面都屬於IDE硬碟。
SCSI
SCSI的英文全稱為「Small Computer System Interface」(小型計算機系統介面),是同IDE(ATA)完全不同的介面,IDE介面是普通PC的標准介面,而SCSI並不是專門為硬碟設計的介面,是一種廣泛應用於小型機上的高速數據傳輸技術。SCSI介面具有應用范圍廣、多任務、帶寬大、CPU佔用率低,以及熱插拔等優點,但較高的價格使得它很難如IDE硬碟般普及,因此SCSI硬碟主要應用於中、高端伺服器和高檔工作站中。
光纖通道
光纖通道的英文拼寫是Fibre Channel,和SCIS介面一樣光纖通道最初也不是為硬碟設計開發的介面技術,是專門為網路系統設計的,但隨著存儲系統對速度的需求,才逐漸應用到硬碟系統中。光纖通道硬碟是為提高多硬碟存儲系統的速度和靈活性才開發的,它的出現大大提高了多硬碟系統的通信速度。光纖通道的主要特性有:熱插拔性、高速帶寬、遠程連接、連接設備數量大等。
光纖通道是為在像伺服器這樣的多硬碟系統環境而設計,能滿足高端工作站、伺服器、海量存儲子網路、外設間通過集線器、交換機和點對點連接進行雙向、串列數據通訊等系統對高數據傳輸率的要求。
SATA
使用SATA(Serial ATA)口的硬碟又叫串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA 1.0規范,2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規范。Serial ATA採用串列連接方式,串列ATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
SATA介面:SATA是Serial ATA的縮寫,即串列ATA。這是一種完全不同於並行ATA的新型硬碟介面類型,由於採用串列方式傳輸數據而得名。SATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
與並行ATA相比,SATA具有比較大的優勢。首先,Serial ATA以連續串列的方式傳送數據,可以在較少的位寬下使用較高的工作頻率來提高數據傳輸的帶寬。Serial ATA一次只會傳送1位數據,這樣能減少SATA介面的針腳數目,使連接電纜數目變少,效率也會更高。實際上,Serial ATA 僅用四支針腳就能完成所有的工作,分別用於連接電纜、連接地線、發送數據和接收數據,同時這樣的架構還能降低系統能耗和減小系統復雜性。其次,Serial ATA的起點更高、發展潛力更大,Serial ATA 1.0定義的數據傳輸率可達150MB/sec,這比目前最塊的並行ATA(即ATA/133)所能達到133MB/sec的最高數據傳輸率還高,而在已經發布的Serial ATA 2.0的數據傳輸率將達到300MB/sec,最終Serial ATA 3.0將實現600MB/sec的最高數據傳輸率。
在此有必要對Serial ATA的數據傳輸率作一下說明。就串列通訊而言,數據傳輸率是指串列介面數據傳輸的實際比特率,Serial ATA 1.0的傳輸率是1.5Gbps,Serial ATA 2.0的傳輸率是3.0Gbps。與其它高速串列介面一樣,Serial ATA介面也採用了一套用來確保數據流特性的編碼機制,這套編碼機制將原本每位元組所包含的8位數據(即1Byte=8bit)編碼成10位數據(即1Byte=10bit),這樣一來,Serial ATA介面的每位元組串列數據流就包含了10位數據,經過編碼後的Serial ATA傳輸速率就相應地變為Serial ATA實際傳輸速率的十分之一,所以1.5Gbps=150MB/sec,而3.0Gbps=300MB/sec。
SATA的物理設計,可說是以Fibre Channel(光纖通道)作為藍本,所以採用四芯接線;需求的電壓則大幅度減低至250mV(最高500mV),較傳統並行ATA介面的5V少上20倍!因此,廠商可以給Serial ATA硬碟附加上高級的硬碟功能,如熱插拔(Hot Swapping)等。更重要的是,在連接形式上,除了傳統的點對點(Point-to-Point)形式外,SATA還支持「星形」連接,這樣就可以給RAID這樣的高級應用提供設計上的便利;在實際的使用中,SATA的主機匯流排適配器(HBA,Host Bus Adapter)就好像網路上的交換機一樣,可以實現以通道的形式和單獨的每個硬碟通訊,即每個SATA硬碟都獨佔一個傳輸通道,所以不存在象並行ATA那樣的主/從控制的問題。
Serial ATA規范不僅立足於未來,而且還保留了多種向後兼容方式,在使用上不存在兼容性的問題。在硬體方面,Serial ATA標准中允許使用轉換器提供同並行ATA設備的兼容性,轉換器能把來自主板的並行ATA信號轉換成Serial ATA硬碟能夠使用的串列信號,目前已經有多種此類轉接卡/轉接頭上市,這在某種程度上保護了我們的原有投資,減小了升級成本;在軟體方面,Serial ATA和並行ATA保持了軟體兼容性,這意味著廠商絲毫也不必為使用Serial ATA而重寫任何驅動程序和操作系統代碼。
另外,Serial ATA接線較傳統的並行ATA(Paralle ATA)接線要簡單得多,而且容易收放,對機箱內的氣流及散熱有明顯改善。而且,SATA硬碟與始終被困在機箱之內的並行ATA不同,擴充性很強,即可以外置,外置式的機櫃(JBOD)不單可提供更好的散熱及插拔功能,而且更可以多重連接來防止單點故障;由於SATA和光纖通道的設計如出一轍,所以傳輸速度可用不同的通道來做保證,這在伺服器和網路存儲上具有重要意義。
Serial ATA相較並行ATA可謂優點多多,將成為並行ATA的廉價替代方案。並且從並行ATA過渡到Serial ATA也是大勢所趨,應該只是時間問題。相關廠商也在大力推廣SATA介面,例如Intel的ICH6系列南橋晶元相較於ICH5系列南橋晶元,所支持的SATA介面從2個增加到了4個,而並行ATA介面則從2個減少到了1個;nVidia的nForce4系列晶元組已經支持SATA II即Serial ATA 2.0,而且三星已經採用Marvell 88i6525 SOC晶元開發新一代的SATA II介面硬碟,並將在2005年初推出。
㈢ 電腦硬碟知識,高手進
散 散裝硬碟(俗稱工包)
盒 盒裝硬碟(或稱原裝)有時候也不一定。有水貨盒裝或者翻新盒裝
3年盒 3年保修的盒裝硬碟
YD 日期的縮寫{具體不大清楚}
㈣ 電腦硬碟相關知識
下載路徑更改到別的盤符
C盤的資料轉移到後邊盤
㈤ 電腦硬碟的知識
舉個直觀例子
並口數據傳輸可以理解為10個人同時從起點出發,同時跑向同一個終點,但每人的速度不同,所以到達時間也不一樣,總時間就長
串口數據傳輸則可理解10個人一個接一個的跑向終點,而且每人都是以同樣的速度跑過去,總時間就短
其實並口設計上的理論速度是大於串口的,但無法保證每個人都是同樣速度跑過去的,所以並口就被淘汰了,被串口替代了。
希望能幫到你
㈥ 電腦硬碟方面的知識
C和d是你的固態,理論速度如果是sata介面一般500左右,這是理論值。你的系統盤在固態,部分文件在d盤。
㈦ 全面的硬碟知識
硬碟,英文「hard-disk」簡稱HD 。是一種儲存量巨大的設備,作用是儲存計算機運行時需要的數據。
體現硬碟好壞的主要參數為傳輸率,其次的為轉速、單片容量、尋道時間、緩存、噪音和S.M.A.R.T.
1956年IBM公司製造出世界上第一塊硬碟350 RAMAC(Random Access Method of Accounting and Control),它的數據為:容量5MB、碟片直徑為24英寸、碟片數為50片、重量上百公斤。碟片上有一層磁性物質,被軸帶著旋轉,有磁頭移動著存儲數據,實現了隨機存取。
1970年磁碟誕生
1973年IBM公司製造出了一台640MB的硬碟、第一次採用「溫徹斯特」技術,是現在硬碟的開端,因為磁頭懸浮在碟片上方,所以鍍磁的碟片在密封的硬碟里可以飛速的旋轉,但有好幾十公斤重。
1975年Soft-adjacent layer(軟接近層)專利的MR磁頭結構產生
1979年IBM發明了薄膜磁頭,這意味著硬碟可以變的很小,速度可以更快,同體積下硬碟可以更大。
1979年IBM 3370誕生,它是第一款採用thin-film感應磁頭及Run-Length-Limited(RLL)編碼配置的硬碟,"2-7"RLL編碼將能減小硬碟錯誤
1986年IBM 9332誕生,它是第一款使用更高效的1-7 run-length-limited(RLL)代碼的硬碟。
1989年第一代MR磁頭出現
1991年IBM磁阻MR(Magneto Resistive)磁頭硬碟出現。帶動了一個G的硬碟也出現。磁阻磁頭對信號變化相當敏感,所以碟片的存儲密度可以得到幾十倍的提高。意味著硬碟的容量可以作的更大。意味著硬碟進入了G級時代。
1993年GMR(巨磁阻磁頭技術)推出,這使硬碟的存儲密度又上了一個台階。
認識硬碟
硬碟是電腦中的重要部件,大家所安裝的操作系統(如:Windows 9x、Windows 2k…)及所有的應用軟體(如:Dreamwaver、Flash、Photoshop…)等都是位於硬碟中,或許你沒感覺到吧!但硬碟確實非常重要,至少目前它還是我們存儲數據的主要場所,那你對硬碟究竟了解多少了?可能你對她一竅不通,不過沒關系,請見下文。
一、硬碟的歷史與發展
從第一塊硬碟RAMAC的產生到現在單碟容量高達15GB多的硬碟,硬碟也經歷了幾代的發展,下面就介紹一下其歷史及發展。
1.1956年9月,IBM的一個工程小組向世界展示了第一台磁碟存儲系統IBM 350 RAMAC(Random Access Method of Accounting and Control),其磁頭可以直接移動到碟片上的任何一塊存儲區域,從而成功地實現了隨機存儲,這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟,這些碟片表面塗有一層磁性物質,它們被疊起來固定在一起,繞著同一個軸旋轉。此款RAMAC在那時主要用於飛機預約、自動銀行、醫學診斷及太空領域內。
2.1968年IBM公司首次提出「溫徹斯特/Winchester」技術,探討對硬碟技術做重大改造的可能性。「溫徹斯特」技術的精隋是:「密封、固定並高速旋轉的鍍磁碟片,磁頭沿碟片徑向移動,磁頭懸浮在高速轉動的碟片上方,而不與碟片直接接觸」,這也是現代絕大多數硬碟的原型。
3.1973年IBM公司製造出第一台採用「溫徹期特」技術的硬碟,從此硬碟技術的發展有了正確的結構基礎。
4.1979年,IBM再次發明了薄膜磁頭,為進一步減小硬碟體積、增大容量、提高讀寫速度提供了可能。
5.80年代末期IBM對硬碟發展的又一項重大貢獻,即發明了MR(Magneto Resistive)磁阻,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往20MB每英寸提高了數十倍。
6.1991年IBM生產的3.5英寸的硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此硬碟容量開始進入了GB數量級。
7.1999年9月7日,Maxtor宣布了首塊單碟容量高達10.2GB的ATA硬碟,從而把硬碟的容量引入了一個新里程碑。
8.2000年2月23日,希捷發布了轉速高達15,000RPM的Cheetah X15系列硬碟,其平均尋道時間只有3.9ms,這可算是目前世界上最快的硬碟了,同時它也是到目前為止轉速最高的硬碟;其性能相當於閱讀一整部Shakespeare只花.15秒。此系列產品的內部數據傳輸率高達48MB/s,數據緩存為4~16MB,支持Ultra160/m SCSI及Fibre Channel(光纖通道) ,這將硬碟外部數據傳輸率提高到了160MB~200MB/s。總得來說,希捷的此款("捷豹")Cheetah X15系列將硬碟的性能提高到了一個新的里程碑。
9.2000年3月16日,硬碟領域又有新突破,第一款「玻璃硬碟」問世,這就是IBM推出的Deskstar 75GXP及Deskstar 40GV,此兩款硬碟均使用玻璃取代傳統的鋁作為碟片材料,這能為硬碟帶來更大的平滑性及更高的堅固性。另外玻璃材料在高轉速時具有更高的穩定性。此外Deskstar 75GXP系列產品的最高容量達75GB,這是目前最大容量的硬碟,而Deskstar 40GV的數據存儲密度則高達14.3 十億數據位/每平方英寸,這再次涮新數據存儲密度世界記錄。
二、硬碟分類
目前的硬碟產品內部碟片有:5.25,3.5,2.5和1.8英寸(後兩種常用於筆記本及部分袖珍精密儀器中,現在台式機中常用3.5英寸的碟片);如果按硬碟與電腦之間的數據介面,可分為兩大類:IDE介面及SCSI介面硬碟兩大陣營。
三、技術規格
目前台式機中硬碟的外形差不了多少,在技術規格上有幾項重要的指標:
1.平均尋道時間(average seek time),指硬碟磁頭移動到數據所在磁軌時所用的時間,單位為毫秒(ms)。注意它與平均訪問時間的差別,平均尋道時間當然是越小越好,現在選購硬碟時應該選擇平均尋道時間低於9ms的產品。
2.平均潛伏期(average latency),指當磁頭移動到數據所在的磁軌後,然後等待所要的數據塊繼續轉動(半圈或多些、少些)到磁頭下的時間,單位為毫秒(ms)。
3.道至道時間(single track seek),指磁頭從一磁軌轉移至另一磁軌的時間,單位為毫秒(ms)。
4.全程訪問時間(max full seek),指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間,單位為毫秒(ms)。
5.平均訪問時間(average access),指磁頭找到指定數據的平均時間,單位為毫秒。通常是平均尋道時間和平均潛伏時間之和。注意:現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所代替的。
6.最大內部數據傳輸率(internal data transfer rate),也叫持續數據傳輸率(sustained transfer rate),單位Mb/S(注意與MB/S之間的差別)。它指磁頭至硬碟緩存間的最大數據傳輸率,一般取決於硬碟的碟片轉速和碟片數據線密度(指同一磁軌上的數據間隔度)。注意,在這項指標中常常使用Mb/S或Mbps為單位,這是兆位/秒的意思,如果需要轉換成MB/S(兆位元組/秒),就必須將Mbps數據除以8(一位元組8位數)。例如,WD36400硬碟給出的最大內部數據傳輸率為131Mbps,但如果按MB/S計算就只有16.37MB/s(131/8)。
7.外部數據傳輸率:通稱突發數據傳輸率(burst data transfer rate),指從硬碟緩沖區讀取數據的速率,在廣告或硬碟特性表中常以數據介面速率代替,單位為MB/S。目前主流硬碟普通採用的是Ultra ATA/66,它的最大外部數據率即為66.7MB/s,而在SCSI硬碟中,採用最新的Ultra 160/m SCSI介面標准,其數據傳輸率可達160MB/s,採用Fibra Channel(光纖通道),最大外部數據傳輸將可達200MB/s。在廣告中我們有時能看到說雙Ultra 160/m SCSI的介面,這理論上將最大外部數據傳輸率提高到了320MB/s,但目前好像還沒有結合有此介面的產品推出。
8.主軸轉速:是指硬碟內主軸的轉動速度,目前ATA(IDE)硬碟的主軸轉速一般為5400~7200rpm,主流硬碟的轉速為7200RPM,至於SCSI硬碟的主軸轉速可達一般為7200~10,000RPM,而最高轉速的SCSI硬碟轉速高達15,000RPM(即希捷「捷豹X15」系列硬碟)。
9.數據緩存:指在硬碟內部的高速存儲器:目前硬碟的高速緩存一般為512KB~2MB,目前主流ATA硬碟的數據緩存應該為2MB,而在SCSI硬碟中最高的數據緩存現在已經達到了16MB。對於大數據緩存的硬碟在存取零散文件時具有很大的優勢。
10.硬碟表面溫度:它是指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。這項指標廠家並不提供,一般只能在各種媒體的測試數據中看到。硬碟工作時產生的溫度過高將影響薄膜式磁頭(包括GMR磁頭)的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的數據讀、寫穩定性。如果對於高轉速的SCSI硬碟一般來說應該加一個硬碟冷卻裝置,這樣硬碟的工作穩定性才能得到保障。
11.MTBF(連續無故障時間):它指硬碟從開始運行到出現故障的最長時間,單位是小時。一般硬碟的MTBF至少在30000或40000小時。這項指標在一般的產品廣告或常見的技術特性表中並不提供,需要時可專門上網到具體生產該款硬碟的公司網址中查詢。
四、介面標准
ATA介面,這是目前台式機硬碟中普通採用的介面類型。
ST-506/412介面:
這是希捷開發的一種硬碟介面,首先使用這種介面的硬碟為希捷的ST-506及ST-412。ST-506介面使用起來相當簡便,它不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種介面就基本上被淘汰了,採用該介面的老硬碟容量多數都低於200MB。早期IBM PC/XT和PC/AT機器使用的硬碟就是ST-506/412硬碟或稱MFM硬碟,MFM(Modified Frequency Molation)是指一種編碼方案 。
ESDI介面:
即(Enhanced Small Drive Interface)介面,它是邁拓公司於1983年開發的。其特點是將編解碼器放在硬碟本身之中,而不是在控制卡上,理論傳輸速度是前面所述的ST-506的2…4倍,一般可達到10Mbps。但其成本較高,與後來產生的IDE介面相比無優勢可言,因此在九十年代後就補淘汰了
IDE及EIDE介面:
IDE(Integrated Drive Electronics)的本意實際上是指把控制器與盤體集成在一起的硬碟驅動器,我們常說的IDE介面,也叫ATA(Advanced Technology Attachment)介面,現在PC機使用的硬碟大多數都是IDE兼容的,只需用一根電纜將它們與主板或介面卡連起來就可以了。 把盤體與控制器集成在一起的做法減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,因為廠商不需要再擔心自己的硬碟是否與其它廠商生產的控制器兼容,對用戶而言,硬碟安裝起來也更為方便。
ATA-1(IDE):
ATA是最早的IDE標準的正式名稱,IDE實際上是指連在硬碟介面的硬碟本身。ATA在主板上有一個插口,支持一個主設備和一個從設備,每個設備的最大容量為504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共規定了3種PIO模式和4種DMA模式(沒有得到實際應用),要升級為ATA-2,你需要安裝一個EIDE適配卡。
ATA-2(EIDE Enhanced IDE/Fast ATA):
這是對ATA-1的擴展,它增加了2種PIO和2種DMA模式,把最高傳輸率提高到了16.7MB/s,同時引進了LBA地址轉換方式,突破了老BIOS固有504MB的限制,支持最高可達8.1GB的硬碟。如你的電腦支持ATA-2,則可以在CMOS設置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的設置。其兩個插口分別可以連接一個主設備和一個從設置,從而可以支持四個設備,兩個插口也分為主插口和從插口。通常可將最快的硬碟和CD—ROM放置在主插口上,而將次要一些的設備放在從插口上,這種放置方式對於486及早期的Pentium電腦是必要的,這樣可以使主插口連在快速的PCI匯流排上,而從插口連在較慢的ISA匯流排上。
ATA-3(FastATA-2):
這個版本支持PIO-4,沒有增加更高速度的工作模式(即仍為16.7MB/s),但引入了簡單的密碼保護的安全方案,對電源管理方案進行了修改,引入了S.M.A.R.T(Self-Monitoring,Analysis and Reporting Technology,自監測、分析和報告技術)
ATA-4(UltraATA、UltraDMA、UltraDMA/33、UltraDMA/66):
這個新標准將PIO-4下的最大數據傳輸率提高了一倍,達到33MB/s,或更高的66MB/s。它還在匯流排佔用上引入了新的技術,使用PC的DMA通道減少了CPU的處理負荷。要使用Ultra-ATA,需要一個空閑的PCI擴展槽,如果將UltraATA硬碟卡插在ISA擴展槽上,則該設備不可能達到其最大傳輸率,因為ISA匯流排的最大數據傳輸率只有8MB/s 。其中的Ultra ATA/66(即Ultra DMA/66)是目前主流桌面硬碟採用的介面類型,其支持最大外部數據傳輸率為66.7MB/s。
Serial ATA:
新的Serial ATA(即串列ATA),是英特爾公司在今年IDF(Intel Developer Forum,英特爾開發者論壇) 發布的將於下一代外設產品中採用的介面類型,就如其名所示,它以連續串列的方式傳送資料,在同一時間點內只會有1位數據傳輸,此做法能減小介面的針腳數目,用四個針就完成了所有的工作(第1針發出、2針接收、3針供電、4針地線)。這樣做法能降低電力消耗,減小發熱量。最新的硬碟介面類型ATA-100就是Serial ATA是初始規格,它支持的最大外部數據傳輸率達100MB/s,上面介紹的那兩款IBM Deskstar 75GXP及Deskstar 40GV就是第一次採用此ATA-100介面類型的產品。在2001年第二季度將推出Serial ATA 1x標準的產品,它能提高150MB/s的數據傳輸率。對於Serial ATA介面,一台電腦同時掛接兩個硬碟就沒有主、從盤之分了,各設備對電腦主機來說,都是Master,這樣我們可省了不少跳線功夫。
SCSI介面:
SCSI就是指Small Computer System Interface(小型計算機系統介面),它最早研製於1979,原是為小型機的研製出的一種介面技術,但隨著電腦技術的發展,現在它被完全移植到了普通PC上。現在的SCSI可以劃分為SCSI-1和SCSI-2(SCSI Wide與SCSI Wind Fast),最新的為SCSI-3,不過SCSI-2是目前最流行的SCSI版本。 SCSI廣泛應用於如:硬碟、光碟機、ZIP、MO、掃描儀、磁帶機、JAZ、列印機、光碟刻錄機等設備上。它的優點非常多主要表現為以下幾點:
1、適應面廣; 使用SCSI,你所接的設備就可以超過15個,而所有這些設備只佔用一個IRQ,這就可以避免IDE最大外掛15個外設的限制。
2、多任務;不像IDE,SCSI允許對一個設備傳輸數據的同時,另一個設備對其進行數據查找。這將在多任務操作系統如Linux、Windows NT中獲得更高的性能。
3、寬頻寬;在理論上,最快的SCSI匯流排有160MB/s的帶寬,即Ultra 160/s SCSI;這意味著你的硬碟傳輸率最高將達160MB/s(當然這是理論上的,實際應用中可能會低一點)。
4、少CPU佔用率
從最早的SCSI到現在Ultra 160/m SCSI,SCSI介面具有如下幾個發展階段
1、SCSI-1 —最早SCSI是於1979年由美國的Shugart公司(Seagate希捷公司的前身)制訂的,並於1986年獲得了ANSI(美國標准協會)承認的SASI(Shugart Associates System Interface施加特聯合系統介面) ,這就是我們現在所指的SCSI -1,它的特點是,支持同步和非同步SCSI外圍設備;支持7台8位的外圍設備最大數據傳輸速度為5MB/S;支持WORM外圍設備。
2、SCSI-2 —90年代初(具體是1992年),SCSI發展到了SCSI-2,當時的SCSI-2 產品(通稱為Fast SCSI)是能過提高同步傳輸時的頻率使數據傳輸率提高為10MB/S,原本為8位的並行數據傳輸稱為:Narrow SCSI;後來出現了16位的並行數據傳輸的WideSCSI,將其數據傳輸率提高到了20MB/S 。
3、SCSI-3 —1995年推出了SCSI-3,其俗稱Ultra SCSI,全稱為SCSI-3 Fast-20 Parallel Interface(數據傳輸率為20M/S)它採用了同步傳輸時鍾頻率提高到20MHZ以提高數據傳輸的技術,因此使用了16位傳輸的Wide模式時,數據傳輸即可達到40MB/s。其允許介面電纜的最大長度為1.5米。
4、1997年推出了Ultra 2 SCSI(Fast-40),其採用了LVD(Low Voltage Differential,低電平微分)傳輸模式,16位的Ultra2SCSI(LVD)介面的最高傳輸速率可達80MB/S,允許介面電纜的最長為12米,大大增加了設備的靈活性。
5、1998年9月更高的數據傳輸率的Ultra160/m SCSI(Wide下的Fast-80)規格正式公布,其最高數據傳輸率為160MB/s,這將給電腦系統帶來更高的系統性能。
現有最流行的串列硬碟技術
隨著INTEL的915平台的發布,最新的ICH6-M也進入了我們的視野。而ICH6除了在一些電源管理特性方面有所增強外,也正式引入了SATA(串列ATA,以下簡稱SATA)和PCI-E概念。對於筆記本來說,從它誕生的那天起就一直使用著PATA(並行ATA,以下簡稱PATA)來連接硬碟,SATA的出現無疑是一項硬碟介面的革命。而如今隨著INTEL的積極推動,筆記本也開始邁入SATA的陣營。
關於SATA的優勢,筆者相信諸位也都有了解。確實,比起PATA,SATA有著很多不可比擬的優勢,而筆者將在本文中透過技術細節來多其進行分析。相信您讀完本文後會對SATA有著更深入的了解。另外由於本文主要針對筆記本和台式機,所以諸如RAID等技術不在本文討論范圍之內。
串列通信和並行通信
再進行詳細的介紹之前,我們先了解一下串列通信和並行通信的特點。
一般來說,串列通信一般由二根信號線和一根地線就可完成互相的信息的傳送。如下圖,我們看到設備A和設備B之間的信號交換僅用了兩根信號線和一根地線就完成了。這樣,在一個時鍾內,二個bit的數據就會被傳輸(每個方向一個bit,全雙工),如果能時鍾頻率足夠高,那麼數據的傳輸速度就會足夠快。
如果為了節省成本,我們也可以只用一根信號線和一根地線連接。這樣在一個時鍾內只有一個bit被傳輸(半雙工),我們也同樣可以提高時鍾頻率來提升其速度。
而並行通信在本質上是和串列通信一樣的。唯一的區別是並行通信依靠多條數據線在一個時鍾周期里傳送更多的bit。下圖中,數據線已經不是一條或者是兩條,而是多條。我們很容易知道,如果有8根數據線的話,在同一時鍾周期內傳送的的數據量是8bit。如果我們的數據線足夠多的話,比如PCI匯流排,那一個周期內就可以傳送32bit的數據。
在這里,筆者想提醒各位讀者,對於一款產品來說,用最低的成本來滿足帶寬的需要,那就是成功的設計,而不會在意你是串列通信還是並行通信,也不會管你的傳輸技術是先進還是落後。
PATA介面的速度
我們知道,ATA-33的速度為33MB/S,ATA-100的速度是100MB/S。那這個速度是如何計算出來的呢?
首先,我們需要知道匯流排上的時鍾頻率,比如ATA-100是25MHz,PATA的並行數據線有16根,一次能傳送16bit的數據。而ATA-66以上的規范為了降低匯流排本身的頻率,PATA被設計成在時鍾的上下沿都能傳輸數據(類似DDR的原理),使得在一個時鍾周期內能傳送32bit。
這樣,我們很容易得出ATA-100的速度為:25M*16bit*2=800Mbps=100MByte/s。
PATA的局限性
在相同頻率下,並行匯流排優於串列匯流排。隨著當前硬碟的數據傳輸率越來越高,傳統的並行ATA介面日益逐漸暴露出一些設計上的缺陷,其中最致命的莫過於並行線路的信號干擾問題。
那各信號線之間是如何干擾的呢?
1,首先是信號的反射現象。從南橋發出的PATA信號,通過扁長的信號線到達硬碟(在筆記本上對應的也有從南橋引出PATA介面,一直布線到硬碟的介面)。學過微波通信的讀者肯定知道,信號在到達PATA硬碟後不可避免的會發生反彈,而反彈的信號必將疊加到當前正在被傳輸的信號上,導致傳輸中數據的完整性被破壞,引起接受端誤判。
所以在實際的設計中,都必須要設計相應的電路來保證信號的完整性。
我們看到,從南橋發出的PATA信號一般都需要經過一個排阻才發送到PATA的設備。我們必須加上至少30個電阻(除了16根數據線,還有一些控制信號)才能有效的防止信號的反彈。而在硬碟內部,硬碟廠商會在裡面接上終端電阻以防止引號反彈。這不僅對成本有所上升,也對PCB的布局也造成了困擾。
當然,信號反彈在任何高速電路里都會發生,在SATA里我們也會看到終端電阻,但因為SATA的數據線比PATA少很多,並且採用了差分信號傳輸,所以這個問題並不突出。
2,其次是信號的偏移問題
理論上,並行匯流排的數據線的長度應該是一致的。而在實際上,這點很難得到保證。信號線長度的不一致性會導致某個信號過快/過慢到達接受端,導致邏輯誤判。不僅如此,導致信號延遲的原因還有很多,比如線路板上的分布電容、信號線在高頻時產生的感抗等都會引起信號的延遲。
如圖,在左側南橋端我們發送的數據為[1,1,1,0],在發送到硬碟的過程中,第四個信號由於某種原因出現延遲,在判斷時刻還沒到達接受端。這樣,接受端判斷接受到的信號為[1,1,1,1],出現錯誤。由此也可看出,並行數據線越多,出現錯誤的概率也越大。
下圖是SONY Z1的硬碟轉接線,我們看到,設計師做了不少蛇行走線以滿足PATA數據線的長度一致性要求。
我們可以很容易想像,信號的時鍾越快,被判斷信號判斷的時間就越短,出現誤判的可能性就越大。在較慢的匯流排上(上),允許數據信號和判斷信號的時間誤差為a,而在高速的匯流排上(下),允許誤差為b。速度越快,允許的誤差越小。這也是PATA的匯流排頻率提升的局限性,而匯流排頻率直接影響著硬碟傳輸速度。。。
3,還有是信號線間的干擾(串音干擾)
這種干擾幾乎存在與任何電路。和信號偏移一樣,串音干擾也是並行通信的通病。由於並行通信需要多條信號線並行走線(以滿足長度、分布電容等參數的一致性),而串音干擾就是在這時候導致的。由於信號線在傳輸數據的過程中不停的以0,1間變換,導致其周邊的磁場變化甚快。通過法拉第定律我們知道,磁場變化越快,切割磁力線的導線上的電壓越大。這個電壓將導致信號的變形,信號頻率越高,干擾愈加嚴重,直至完全無法工作。串音干擾可以說這是對並行的PATA線路影響最大的不利因素,並且大大限制了線路的長度。
硬碟的恢復主要是靠備份,還有一些比較專業的恢復技術就是要專業學習的了.不過我不專業,現在最常用的就是GHOST,它可以備份任何一個盤付,並生成一個備份文件必要的時候可以用來恢復數據
現在市場上的主要幾款硬碟就是邁托,西部數據(WD),希捷(ST),三星,東之,松下,還有最新的那個易拓保密硬碟
㈧ 電腦硬碟知識
所謂的標准就是你的要求,你拿這個電腦來干什麼的?舉個例子,你花一萬配了個電腦,從理論上來說應該是很好了,但是這個電腦如果是專業制圖的,用的肯定是專業顯卡,如果你的用途是打游戲 的話,那這個1萬的電腦就是垃圾,根本達不到你的標準的,其實只要你合理配置,可能5-6000元就能達到你的 標準的。
㈨ 電腦硬碟知識是什麼
-- 硬碟知識
硬碟做為計算機的外存儲器,容量越做越大,但是其穩定性好像卻是越來越不如以前。到現在還有三、四百MB的IDE介面老硬碟在二手市場上銷售,並且用起來一點問題也沒有,只是速度太慢。可新的大容量硬碟呢?速度是快了許多,就是三天兩頭的出毛病。
硬碟在使用過程中,由於硬碟的質量問題,供電不良,病毒破壞,高頻干擾等情況會出現如下的故障現象:
1.硬碟偶爾丟失數據
按理論上說,正常情況下硬碟是不應該丟失數據的。不過因為硬碟工作在高速狀態,周圍的電磁干擾隨時有可能造成硬碟在讀寫數據時發生錯誤。雖然有可能是0寫成了1或者是1被讀成了0,但是我們用戶在操作電腦時遇到的就是文件找不到或者文件被破壞無法正常打開,也就是數據丟失了。這也是我們的電腦剛才還好好的,重啟後就無法進入系統的原因,重裝系統就問題解決了。
不過,最需要注意的是:隨著網路的迅速發展,病毒開始泛濫,也使我們的電腦變得越來越不安全。有些病毒專門針對某些文件進行破壞,因此如果某些文件丟失或打不開時,最好先查毒,確定自己的電腦是否感染了病毒,防止因為病毒造成的損失擴大。如果某一天早晨,當我們打開電腦時發現有些文件丟失時,最好不要大驚小怪,先對電腦徹底殺毒,同時對電腦的防病毒軟體及時進行升級。
2.硬碟不斷有壞道出現
這種情況有兩種原因,一是硬碟質量不好,控制晶元的時序錯誤,造成大面積壞道出現;二是硬碟的供電不正常,供電電壓偏低,造成讀盤時定位不準,表面上出現大面積的壞道。對於硬碟質量問題造成的壞道,如果在保修期內還好,可以找商家換一個新的。但是如果過了保修期的話就只能自認倒霉了,只能再買新的。
3.硬碟在BIOS中有時能找到,有時又找不到
造成這種故障的原因可能有:
1)主板的IDE控制器有問題;
2)硬碟的介面電路故障或者是硬碟的磁臂控制電路或磁頭有問題,無法正常讀取數據;
3)硬碟的供電電壓不穩,供電正常時就能找到硬碟,供電偏低時硬碟丟失;
4)主機超頻,造成硬碟的時鍾頻率過高,而出現不穩定的情況;
5)還有就是硬碟的數據線和硬碟介面有問題及硬碟的電源介面,接觸不良所致。
在這里暫不考慮硬碟的跳線錯誤,主從盤設置沖突等情況。
4.硬碟在BIOS中能夠找到,但是無法正常格式化和使用
這種情況一般是硬碟的介面通訊部分沒有問題,而硬碟的控制部分和數據讀寫部分有問題。如果硬碟讀寫時沒有異常的響聲,但是不能進行格式化,即使低格時也不斷的報錯,這種情況一般是硬碟的讀寫電路部分出了問題,讀寫數據的錯誤率太高所致。
5.硬碟在BIOS中能夠認到,但是卻不能啟動系統
造成這種情況的原因也有多種:
1)硬碟的0磁軌出現錯誤,無法正常讀取硬碟的分區信息;
2)硬碟的分區信息被破壞或被人為的加邏輯鎖所致;
3)硬碟的控制電路和讀寫電路錯誤,造成數據讀寫錯誤;
6.硬碟拷貝數據特別慢
這種情況的原因也有好幾種:
1)硬碟的數據線使用錯誤,如支持DMA100的硬碟使用了DMA33的數據線,造成硬碟的數據傳輸明顯下降;
2)硬碟的數據線方向接錯,DMA66、100和133的硬碟數據線是有方向性的,如果接反了,也能正常讀寫,只是速度明顯下降,有時候慢得讓人無法忍受;
3)硬碟的DMA通道被關閉,沒有使用DMA數據傳輸方式,而使用傳統的數據塊傳輸方式,致使數據傳輸率大大下降;
4)硬碟的數據讀寫電路或介面電路,也有可能是主板的IDE介面電路出現問題,造成數據傳輸率降低;
5)再有就是硬碟的供電不足或供電電源中的紋波系統過大,這種情況主要是主機開關電源的功率不足或使用過久後濾波電容失容或漏電所致。
7.硬碟讀盤時有異響
一般出現這種情況都是硬碟的磁臂或磁頭出現硬體損壞造成的,如磁臂斷,磁頭脫落或變形錯位後,與硬碟的盤面接觸產生尖叫的異常響聲。出現這種情況多數都證明硬碟已經壽終正寢了。如果你的硬碟上有重要數據,最好找非常專業的數據恢復公司,使用特殊的設備來把數據讀出來,一般別指望硬碟有修復的可能。
8.硬碟在使用一段時間後,開機「咣咣」直響
這種情況有的硬碟是一開機就出現這種「咣咣」撞牆似的聲音直響,有的是硬碟在使用一段時間後才出現。這種「咣咣」的聲音是硬碟的磁臂在移動時動作過大,定位異常,造成與外殼碰撞而發出的異響。一般來說出現這種情況硬碟只能報廢,沒有修理價值。
9.操作系統提示認到了移動硬碟,但是無法正確安裝硬碟的驅動程序,無法使用
造成這種現象的原因是移動硬碟的耗電量大,需要+5V 700MA以上的電流,而一般主板的USB介面能夠提供的電流只有500MA,供電電流不足,無法正常驅動硬碟的電機工作,造成無法正確安裝移動硬碟的驅動。同時也會聽到移動硬碟連續不斷的「嘩嘩」的轉到聲,並不是正常硬碟轉到時「吱吱」聲。
以上幾種情況是目前硬碟經常出現的故障,我們在使用過程中如果發現自己的硬碟有上述情況下時,如果在保修期內時,應該盡快把自己的數據進行備份,再把硬碟送經銷商處進行更換,因為通常經銷商是不負責數據備份的。
隨著硬碟容量和轉速的迅速增大,硬碟的數據也似乎越來越不保險了。七八年前一二百兆的小硬碟,雖說速度慢一點,但到現在還能用。現在的硬碟可說不準,有的硬碟剛買回家一個星期,就開始丟數據,有時整個硬碟的分區都沒了,你說怪不怪。最保險的方法,還是買一個刻錄機,隨時把自己寫的文章或下載的數據,編寫的程序代碼刻成光碟,就丟不了啦 說到數據恢復,我們就不能不提到硬碟的數據結構、文件的存儲原理,甚至操作系統的啟動流程,這些是你在恢復硬碟數據時不得不利用的基本知識。即使你不需要恢復數據,理解了這些知識(即使只是稍微多知道一些),對於你平時的電腦操作和應用也是很有幫助的。
我們就從硬碟的數據結構談起吧……
硬碟數據結構
初買來一塊硬碟,我們是沒有辦法使用的,你需要將它分區、格式化,然後再安裝上操作系統才可以使用。就拿我們一直沿用到現在的Win9x/Me系列來說,我們一般要將硬碟分成主引導扇區、操作系統引導扇區、FAT、DIR和Data等五部分(其中只有主引導扇區是唯一的,其它的隨你的分區數的增加而增加)。
主引導扇區
主引導扇區位於整個硬碟的0磁軌0柱面1扇區,包括硬碟主引導記錄MBR(Main Boot Record)和分區表DPT(Disk
Partition
Table)。其中主引導記錄的作用就是檢查分區表是否正確以及確定哪個分區為引導分區,並在程序結束時把該分區的啟動程序(也就是操作系統引導扇區)調入內存加以執行。至於分區表,很多人都知道,以80H或00H為開始標志,以55AAH為結束標志,共64位元組,位於本扇區的最末端。值得一提的是,MBR是由分區程序(例如DOS
的Fdisk.exe)產生的,不同的操作系統可能這個扇區是不盡相同。如果你有這個意向也可以自己去編寫一個,只要它能完成前述的任務即可,這也是為什麼能實現多系統啟動的原因(說句題外話:正因為這個主引導記錄容易編寫,所以才出現了很多的引導區病毒)。
操作系統引導扇區
OBR(OS Boot
Record)即操作系統引導扇區,通常位於硬碟的0磁軌1柱面1扇區(這是對於DOS來說的,對於那些以多重引導方式啟動的系統則位於相應的主分區/擴展分區的第一個扇區),是操作系統可直接訪問的第一個扇區,它也包括一個引導程序和一個被稱為BPB(BIOS
Parameter
Block)的本分區參數記錄表。其實每個邏輯分區都有一個OBR,其參數視分區的大小、操作系統的類別而有所不同。引導程序的主要任務是判斷本分區根目錄前兩個文件是否為操作系統的引導文件(例如MSDOS或者起源於MSDOS的Win9x/Me的IO.SYS和MSDOS.SYS)。如是,就把第一個文件讀入內存,並把控制權交予該文件。BPB參數塊記錄著本分區的起始扇區、結束扇區、文件存儲格式、硬碟介質描述符、根目錄大小、FAT個數、分配單元(Allocation
Unit,以前也稱之為簇)的大小等重要參數。OBR由高級格式化程序產生(例如DOS 的Format.com)。