导航:首页 > 电脑文件 > 电脑硬盘列阵

电脑硬盘列阵

发布时间:2022-01-10 22:22:50

⑴ 急!!如何制作磁盘阵列(RAID)。电脑配置如下

你这个没有办法组哦。 组阵列要求硬盘容量 型号 批次一致较为稳定。 你这有个2TB 加1TB的话。只能组R-0 但是问题阵列是以最小容量 做为阵列的容量的 你的2TB会被视做1TB,所以组出来的阵列还是2TB 浪费了1TB的容量哦。你为什么组阵列啊 剪视频吗?

⑵ 电脑的磁盘阵列是怎么做的

磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。

盘阵列的全称是:
RendanArrayofInexpensiveDisk,简称RAID技术。它是1988年由美国加州大学Berkeley分校的DavidPatterson教授等人提出来的磁盘冗余技术。从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。现在已基本得到公认的有下面八种系列。
1.RAID0(0级盘阵列)
RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。
2.RAID1(1级盘阵列)
RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。
3.RAID2(2级盘阵列)
RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k
因此按位交叉存取最有利于作汉明码检验。这种盘适于大数据的读写。但冗余信息开销还是太大,阻止了这类盘的广泛应用。
4.RAID3(3级盘阵列)
RAID3为单盘容错并行传输阵列盘。它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上)。它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次I/O。
5.RAID4(4级盘阵列)
RAID4是一种可独立地对组内各盘进行读写的阵列。其校验盘也只有一个。
RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可。从而提高了小量数据的I/O速率。
6.RAID5(5级盘阵列)
RAID5是一种旋转奇偶校验独立存取的阵列。它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上。于是在同一台磁盘机上既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作。所以RAID5即适于大数据量的操作,也适于各种事务处理。它是一种快速,大容量和容错分布合理的磁盘阵列。
7.RAID6(6级盘阵列)
RAID6是一种双维奇偶校验独立存取的磁盘阵列。它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘。这类盘阵列可容许双盘出错。
8.RAID7(7级盘阵列)
RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高。Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中。一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块。在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失。写操作将直接在cache级响应,然后再转到磁盘阵列。数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度。在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽。
这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要。
解析磁盘阵列的关键技术
存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。
在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。
回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Rendant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。
SCSI技术
SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占据了服务器的存储市场。SCSI-3协议则增加了能满足特殊设备协议所需要的命令集,使得SCSI协议既适应传统的并行传输设备,又能适应最新出现的一些串行设备的通讯需要,如光纤通道协议(FCP)、串行存储协议(SSP)、串行总线协议等。渐渐地,“小型机”的概念开始弱化,“高性能计算机”和“服务器”的概念在人们的心目中得到强化,SCSI一度成为用户从硬件上来区分“服务器”和PC机的一种标准。
通常情况下,用户对SCSI总线的关心放在硬件上,不同的SCSI的工作模式意味着有不同的最大传输速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大传输速度并不代表设备正常工作时所能达到的平均访问速度,也不意味着不同SCSI工作模式之间的访问速度存在着必然的“倍数”关系。SCSI控制器的实际访问速度与SCSI硬盘型号、技术参数,以及传输电缆长度、抗干扰能力等因素关系密切。提高SCSI总线效率必须关注SCSI设备端的配置和传输线缆的规范和质量。可以看出,Ultra 3模式下获得的实际访问速度还不到Ultra Wide模式下实际访问速度的2倍。
一般说来,选用高速的SCSI硬盘、适当增加SCSI通道上连接硬盘数、优化应用对磁盘数据的访问方式等,可以大幅度提高SCSI总线的实际传输速度。尤其需要说明的是,在同样条件下,不同的磁盘访问方式下获得的SCSI总线实际传输速度可以相差几十倍,对应用的优化是获得高速存储访问时必须关注的重点,而这却常常被一些用户所忽视。按4KB数据块随机访问6块SCSI硬盘时,SCSI总线的实际访问速度为2.74MB/s,SCSI总线的工作效率仅为总线带宽的1.7%;在完全不变的条件下,按256KB的数据块对硬盘进行顺序读写,SCSI总线的实际访问速度为141.2MB/s,SCSI总线的工作效率高达总线带宽的88%。
随着传输速度的提高,信号传输过程中的信号衰减和干扰问题显得越来越突出,终结器在一定程度上可以起到降低信号波反射,改善信号质量的作用。同时,LVD(Low-Voltage Differential)技术的应用也越来越多。LVD工作模式是和SE(Single-Ended)模式相对应的,它可以很好地抵抗传输干扰,延长信号的传输距离。同时,Ultra 2 SCSI和Ultra 3 SCSI模式也通过采用专用的双绞型SCSI电缆来提高信号传输的质量。
在磁盘阵列的概念中,大容量硬盘并不是指单个硬盘容量大,而是指将单个硬盘通过RAID技术,按RAID 级别组合成更大容量的硬盘。所以在磁盘阵列技术中,RAID技术是比较关键的,同时,根据所选用的RAID级别的不同,得到的“大硬盘”的功能也有不同。
RAID是一项非常成熟的技术,但由于其价格比较昂贵,配置也不方便,缺少相对专业的技术人员,所以应用并不十分普及。据统计,全世界75%的服务器系统目前没有配置RAID。由于服务器存储需求对数据安全性、扩展性等方面的要求越来越高,RAID市场的开发潜力巨大。RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的只有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利用率的RAID级别,适用于Video / Audio信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损坏都将带来数据灾难性的损失。所以,在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。
RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。但其无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”。
RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案。
RAID 5是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高(见图6)。任何一块硬盘上数据丢失,均可以通过校验数据推算出来。它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上。RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是1块硬盘出现故障以后,整个系统的性能大大降低。
对于RAID 1、RAID 0+1、RAID 5阵列,配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现HA(High Availability)高可用系统具有重要意义。
各厂商还在不断推出各种RAID级别和标准。例如更高安全性的,从RAID控制器开始镜像的RAID;更快读写速度的,为构成RAID的每块硬盘配置CPU和Cache的RAID等等,但都不普及。用IDE硬盘构建RAID的技术是新出现的一个技术方向,对市场影响也较大,其突出优点就是构建RAID阵列非常廉价。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三个级别,最多支持4块IDE硬盘。由于受IDE设备扩展性的限制,同时,也由于IDE设备也缺乏热可替换的技术支持的原因,IDE RAID的应用还不多。
总之,发展是永恒的主题,在服务器存储技术领域也不例外。一方面,一些巨头厂商尝试推出新的概念或标准,来领导服务器及存储技术的发展方向,较有代表性的如Intel力推的IA-64架构及存储概念;另一方面,致力于存储的专业厂商以现有技术和工业标准为基础,推动SCSI、RAID、Fibre Channel等基于现有存储技术和方案快速更新和发展。在市场经济条件下,检验技术发展的唯一标准是市场的认同。市场呼唤好的技术,而新的技术必须起到推动市场向前发展作用时才能被广泛接受和承认。随着高性能计算机市场的发展,高性能比、高可靠性、高安全性的存储新技术也会不断涌现。
现在市场上的磁盘阵列产品有很多,用户在选择磁盘阵列产品的过程中,也要根据自己的需求来进行选择,现在列举几个磁盘阵列产品,同时也为需要磁盘阵列产品的用户提供一些选择。表2列出了几种磁盘阵列的主要技术指标。
--------------------------------------------------------------------------------
小知识:磁盘阵列的可靠性和可用性
可靠性,指的是硬盘在给定条件下发生故障的概率。可用性,指的是硬盘在某种用途中可能用的时间。磁盘阵列可以改善硬盘系统的可靠性。从表3中可以看到RAID硬盘子系统与单个硬盘子系统的可靠性比较。
此外,在系统的可用性方面,单一硬盘系统的可用性比没有数据冗余的磁盘阵列要好,而冗余磁盘阵列的可用性比单个硬盘要好得多。这是因为冗余磁盘阵列允许单个硬盘出错,而继续正常工作;一个硬盘故障后的系统恢复时间也大大缩短(与从磁带恢复数据相比);冗余磁盘阵列发生故障时,硬盘上的数据是故障当时的数据,替换后的硬盘也将包含故障时的数据。但是,要得到完全的容错性能,计算机硬盘子系统的其它部件也必须有冗余。

⑶ 什么是硬盘阵列

一般不叫硬盘阵列,叫磁盘阵列
磁盘阵列(,RAID),有“价格便宜且多余的磁盘阵列”之意。原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。同时利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。磁盘阵列还能利用同位检查(ParityCheck)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
RAID技术主要包含RAID0~RAID7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:
RAID0:RAID0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID0不能应用于数据安全性要求高的场合。
RAID1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID1可以提高读取性能。RAID1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。
RAID0+1:也被称为RAID10标准,实际是将RAID0和RAID1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID0的超凡速度和RAID1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。
RAID2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID2技术实施更复杂,因此在商业环境中很少使用。
RAID3:它同RAID2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。
RAID4:RAID4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID4在商业环境中也很少使用。
RAID5:RAID5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID5更适合于小数据块和随机读写的数据。RAID3与RAID5相比,最主要的区别在于RAID3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
RAID6:与RAID5相比,RAID6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID6很少得到实际应用。
RAID7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID7可以看作是一种存储计算机(StorageComputer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID5+3(RAID53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。
RAID5E(RAID5Enhencement):RAID5E是在RAID5级别基础上的改进,与RAID5类似,数据的校验信息均匀分布在各硬盘上,但是,在每个硬盘上都保留了一部分未使用的空间,这部分空间没有进行条带化,最多允许两块物理硬盘出现故障。看起来,RAID5E和RAID5加一块热备盘好象差不多,其实由于RAID5E是把数据分布在所有的硬盘上,性能会与RAID5加一块热备盘要好。当一块硬盘出现故障时,有故障硬盘上的数据会被压缩到其它硬盘上未使用的空间,逻辑盘保持RAID5级别。
RAID5EE:与RAID5E相比,RAID5EE的数据分布更有效率,每个硬盘的一部分空间被用作分布的热备盘,它们是阵列的一部分,当阵列中一个物理硬盘出现故障时,数据重建的速度会更快。开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司。面向个人用户的IDE-RAID芯片一般只提供了RAID0、RAID1和RAID0+1(RAID10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA100标准,而HighPoint公司新推出的HPT372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度。
RAID50:RAID50是RAID5与RAID0的结合。此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。每个RAID5子磁盘组要求三个硬盘。RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。优势:更高的容错能力,具备更快数据读取速率的潜力。需要注意的是:磁盘故障会影响吞吐量。故障后重建信息的时间比镜像配置情况下要长。

⑷ 硬盘阵列怎么做

第一步
1备份好硬盘中的数据
2准备好一张带Fdisk与Format命令的Windows 98启动盘[软盘或者带启动的98安装盘都行]
第二步
将两块硬盘的跳线设置为Master,分别接上IDE3、IDE4口(它们由主板上的HighPoint370芯片控制)顺序不考虑
第三步
对BIOS进行设置,打开ATA RAID CONTROLLER。我的板子是进入INTEGRATED PERIPHERALS选项并开启ATA100 RAID IDE CONTROLLER 最后设置软驱或光驱作为首选项。
第四步
接下来的设置步骤是创建RAID 0的核心内容。
1.系统BIOS设置完成以后重启电脑,开机检测时将不会再报告发现硬盘。
2.磁盘的管理将由HighPoint 370芯片接管。
3.下面是非常关键的HighPoint 370 BIOS设置,在HighPoint 370磁盘扫描界面同时按下“Ctrl”和“H”。
4.进入HighPoint 370 BIOS设置界面后第一个要做的工作就是选择“Create RAID”创建RAID。
5.在“Array Mode(阵列模式)”中进行RAID模式选择,这里能够看到RAID 0、RAID 1、RAID 0+1和Span的选项 选择RAID 0项。
6.RAID模式选择完成会自动退出到上一级菜单进行“Disk Drives(磁盘驱动器)”选择 直接回车就行了。
7.下一项设置是条带单位大小,缺省值为64kB不用修改
8.接着是“Start Create(开始创建)”的选项,在你按下“Y”之前,确认硬盘数据是不是备份好了 一旦开始创建RAID,硬盘上的所有数据都会被清除。
9.创建完成以后是指定BOOT启动盘,任选一个吧。
按“Esc”键退出,当然少不了按下“Y”来确认一下。
第五步
再次重启电脑以后,看到“Striping(RAID 0)for Array #0”字样了。这时候两块硬盘就被做成列阵了 就象对一块盘格式化一样 插入启动盘来格式化和分区
第六步
对于采用RAID的电脑,操作系统的安装和普通情况下不一样, Windows XP完成第一步“文件复制”重启以后,安装程序会以英文提示“按下F6安装SCSI设备或RAID磁盘”,这时候就要按下F6 出现安装选择,选择“S”安装RAID控制芯片驱动 按下“S”键会提示插入RAID芯片驱动盘。回车,安装程序自动搜索驱动盘上的程序,选择“WinXP”那一个并回车。
接下来是正常的系统安装,和普通安装没有任何区别。

安装完毕 进入系统 RAID 0 就安装好了

⑸ 个人电脑需要用磁盘阵列吗

个人电脑一般不需要用到磁盘阵列。
磁盘阵列一般是用于服务器,为了提供更高的速度和更安全的数据存储备份。个人电脑使用磁盘阵列,速度提升效果不明显,还不如使用固态硬盘来得直接。而且个人电脑对数据安全的要求不高,重要资料只需要定期备份到备份硬盘或者是移动硬盘上基本就高枕无忧。

⑹ 一台电脑多个硬盘,硬盘阵列怎么做

可以的。 1,一般情况下,现在的电脑主板有4个插孔,楼主打开电脑主机箱后就可看到。 2,四个插孔中,其中一个已经插上购买电脑时的硬盘,一个插着光驱,两个什么也没有插。 3,现实生活中,因为某些需要,要增加硬盘数量,直接插到空着的插孔上就可以了。 4,如果是老式主板,则只有两个插孔。那么,可以拔掉光驱插上硬盘。

⑺ 列阵硬盘

你的主板支持RAID几?用磁盘阵列做数据冗余很浪费空间哦。
具体操作参考主板说明书,应该很详细

⑻ 怎样组建磁盘列阵

近,刚刚帮朋友装了一台电脑,朋友选择了160GB的SATA硬盘。之前,朋友有一台老的电脑,由于经常在网上下载影片和游戏,因此对硬盘进行了几次升级,分几次购买了几块80GB PATA硬盘。由于朋友的那台旧电脑实在没法再用,因此打算把几块硬盘组合起来,装进新配的电脑中使用。因此朋友想组成RAID磁盘阵烈进行使用,以提高机器性能和增大磁盘的容量。那么什么是RAID呢?如何实现RAID功能?PATA与SATA硬盘能组建RAID磁盘阵列吗?于是笔者进行了整理搜集,得文如下:
一、什么是RAID?其具备哪些常用的工具模式?

即然提到了RAID磁盘阵列,那么我们就先来了解一下什么是RAID?所谓的RAID,是Rendant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。由1987年由加州大学伯克利分校提出的,初衷是为了将较廉价的多个小磁盘进行组合来替代价格昂贵的大容量磁盘,希望单个磁盘损坏后不会影响到其它磁盘的继续使用,使数据更加的安全。RAID作为一种廉价的磁盘冗余阵列,能够提供一个独立的大型存储设备解决方案。在提高硬盘容量的同时,还能够充分提高硬盘的速度,使数据更加安全,更加易于磁盘的管理。

了解RAID基本定义以后,我们再来看看RAID的几种常见工作模式。

1、RAID 0

RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。RAID 0没有提供冗余或错误修复能力,是实现成本是最低的。

RAID 0最简单的实现方式就是把N块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起创建一个大的卷集。在使用中电脑数据依次写入到各块硬盘中,它的最大优点就是可以整倍的提高硬盘的容量。如使用了三块80GB的硬盘组建成RAID 0模式,那么磁盘容量就会是240GB。其速度方面,各单独一块硬盘的速度完全相同。最大的缺点在于任何一块硬盘出现故障,整个系统将会受到破坏,可靠性仅为单独一块硬盘的1/N。

为了解决这一问题,便出一了RAID 0的另一种模式。即在N块硬盘上选择合理的带区来创建带区集。其原理就是将原先顺序写入的数据被分散到所有的四块硬盘中同时进行读写。四块硬盘的并行操作使同一时间内磁盘读写的速度提升了4倍。

在创建带区集时,合理的选择带区的大小非常重要。如果带区过大,可能一块磁盘上的带区空间就可以满足大部分的I/O操作,使数据的读写仍然只局限在少数的一、两块硬盘上,不能充分的发挥出并行操作的优势。另一方面,如果带区过小,任何I/O指令都可能引发大量的读写操作,占用过多的控制器总线带宽。因此,在创建带区集时,我们应当根据实际应用的需要,慎重的选择带区的大小。

带区集虽然可以把数据均匀的分配到所有的磁盘上进行读写。但如果我们把所有的硬盘都连接到一个控制器上的话,可能会带来潜在的危害。这是因为当我们频繁进行读写操作时,很容易使控制器或总线的负荷超载。为了避免出现上述问题,建议用户可以使用多个磁盘控制器。最好解决方法还是为每一块硬盘都配备一个专门的磁盘控制器。

虽然RAID 0可以提供更多的空间和更好的性能,但是整个系统是非常不可靠的,如果出现故障,无法进行任何补救。所以,RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。

2、RAID 1

RAID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。虽然这样对数据来讲绝对安全,但是成本也会明显增加,磁盘利用率为50%,以四块80GB容量的硬盘来讲,可利用的磁盘空间仅为160GB。另外,出现硬盘故障的RAID系统不再可靠,应当及时的更换损坏的硬盘,否则剩余的镜像盘也出现问题,那么整个系统就会崩溃。更换新盘后原有数据会需要很长时间同步镜像,外界对数据的访问不会受到影响,只是这时整个系统的性能有所下降。因此,RAID 1多用在保存关键性的重要数据的场合。

RAID 1主要是通过二次读写实现磁盘镜像,所以磁盘控制器的负载也相当大,尤其是在需要频繁写入数据的环境中。为了避免出现性能瓶颈,使用多个磁盘控制器就显得很有必要。

3、RAID0+1

从RAID 0+1名称上我们便可以看出是RAID0与RAID1的结合体。在我们单独使用RAID 1也会出现类似单独使用RAID 0那样的问题,即在同一时间内只能向一块磁盘写入数据,不能充分利用所有的资源。为了解决这一问题,我们可以在磁盘镜像中建立带区集。因为这种配置方式综合了带区集和镜像的优势,所以被称为RAID 0+1。把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立带区集至少4个硬盘。

由于我们此次只是介绍家用台式机如何组建RAID磁盘阵列功能,目前主流的主板也只是提供这三种组建模式,因此其它诸如服务等的高级RAID模式,这里我们将不再过多的介绍。

二、主板芯片组RAID控制芯片介绍

Intel南桥芯片ICH5R、ICH6R集成有SATA-RAID控制器,但仅支持SATA-RAID,不支持PATA-RAID。Intel采用的是桥接技术,就是把SATA-RAID控制器桥接到IDE控制器,因此可以通过BIOS检测SATA硬盘,并且通过BIOS设置SATA-RAID。当连接SATA硬盘而又不做RAID时,是把SATA硬盘当作PATA硬盘处理的,安装OS时也不需要驱动软盘,在OS的设备管理器内也看不到SATA-RAID控制器,看到的是IDE ATAPI控制器,而且多了两个IDE通道(由两个SATA通道桥接的)。只有连接两个SATA硬盘,且作SATA-RAID时才使用SATA-RAID控制器,安装OS时需要需要驱动软盘,在OS的设备管理器内可以看到SATA-RAID控制器。安装ICH5R、ICH6R的RAID IAA驱动后,可以通过IAA程序查看RAID盘的性能参数。

VIA南桥芯片VT8237、VT8237R的SATA-RAID设计与Intel不同,它是把一个SATA-RAID控制器集成到8237南桥内,与南桥里的IDE控制器没有关系。当然这个SATA-RAID控制器也不见得是原生的SATA模式,因为传输速度也没有达到理想的SATA性能指标。BIOS不负责检测SATA硬盘,所以在BIOS里看不到SATA硬盘。SATA硬盘的检测和RAID设置需要通过SATA-RAID控制器自己BootROM(也可以叫SATA-RAID控制器的BIOS)。所以BIOS自检后会启动一个BootROM检测SATA硬盘,检测到SATA硬盘后就显示出硬盘信息,此时按快捷键Tab就可以进入BootROM设置SATA-RAID。在VIA的VT8237南桥的主板上使用SATA硬盘,无论是否做RAID安装OS时都需要驱动软盘,在OS的设备管理器内可以看到SATA-RAID控制器。VIA的芯片也只是集成了SATA-RAID控制器。

NVIDIA的nForce2/ nForce3/ nForce4芯片组的SATA/IDE/RAID处理方式是集Intel和VIA的优点于一身。第一是把SATA/IDE/RAID控制器桥接在一起,在不做RAID时,安装XP/2000也不需要任何驱动。第二是在BIOS里的SATA硬盘不像Intel那样需要特别设置,接上SATA硬盘BIOS就可以检测到。第三是不仅SATA硬盘可以组成RAID,PATA硬盘也可以组成RAID,PATA硬盘与SATA硬盘也可以组成RAID。这给需要RAID的用户带来极大的方便,Intel的ICH5R、ICH6R,VIA的VT8237都不支持PATA的IDE RAID。

三、NVIDIA芯片组BIOS设置和RAID设置简单介绍

nForce系列芯片组的BIOS里有关SATA和RAID的设置选项有两处,都在Integrated Peripherals(整合周边)菜单内。

SATA的设置项:Serial-ATA,设定值有[Enabled], [Disabled]。这项的用途是开启或关闭板载Serial-ATA控制器。使用SATA硬盘必须把此项设置为[Enabled]。如果不使用SATA硬盘可以将此项设置为[Disabled],可以减少占用的中断资源。

RAID的设置项在Integrated Peripherals/Onboard Device(板载设备)菜单内,光标移到Onboard Device,按进入如子菜单:RAID Config就是RAID配置选项,光标移到RAID Config,按就进入如RAID配置菜单:

第一项IDE RAID是确定是否设置RAID,设定值有[Enabled], [Disabled]。如果不做RAID,就保持缺省值[Disabled],此时下面的选项是不可设置的灰色。

如果做RAID就选择[Enabled],这时下面的选项才变成可以设置的黄色。IDE RAID下面是4个IDE(PATA)通道,再下面是SATA通道。nForce2芯片组是2个SATA通道,nForce3/4芯片组是4个SATA通道。可以根据你自己的意图设置,准备用哪个通道的硬盘做RAID,就把那个通道设置为[Enabled]。

设置完成就可退出保存BIOS设置,重新启动。这里要说明的是,当你设置RAID后,该通道就由RAID控制器管理,BIOS的Standard CMOS Features里看不到做RAID的硬盘了。

BIOS设置后,仅仅是指定那些通道的硬盘作RAID,并没有完成RAID的组建,前面说过做RAID的磁盘由RAID控制器管理,因此要由RAID控制器的RAID BIOS检测硬盘,以及设置RAID模式。BIOS启动自检后,RAID BIOS启动检测做RAID的硬盘,检测过程在显示器上显示,检测到硬盘后留给用户几秒钟时间,以便用户按F 1 0 进入RAID BIOS Setup。

nForce芯片组提供的RAID(冗余磁盘阵列)的模式共有下面四种:

RAID 0:硬盘串行方案,提高硬盘读写的速度。

RAID 1:镜像数据的技术。

RAID 0+1:由RAID 0和RAID 1阵列组成的技术。

Spanning (JBOD):不同容量的硬盘组成为一个大硬盘。

四、操作系统安装过程介绍

按F10进入RAID BIOS Setup,会出现NVIDIA RAID Utility -- Define a New Array(定义一个新阵列)。默认的设置是:RAID Mode(模式)--Mirroring(镜像),Striping Block(串行块)--Optimal(最佳)。

通过这个窗口可以定义一个新阵列,需要设置的项目有:选择RAID Mode(RAID模式):Mirroring(镜像)、Striping(串行)、Spanning(捆绑)、Stripe Mirroring(串行镜像)。

设置Striping Block(串行块):4 KB至128 KB/Optimal

指定RAID Array(RAID阵列)所使用的磁盘

用户可以根据自己的需要设置RAID模式,串行块大小和RAID阵列所使用的磁盘。其中串行块大小最好用默认的Optimal。RAID阵列所使用的磁盘通过光标键→添加。

做RAID的硬盘可以是同一通道的主/从盘,也可以是不同通道的主/从盘,建议使用不同通道的主/从盘,因为不同通道的带宽宽,速度快。Loc(位置)栏显示出每个硬盘的通道/控制器(0-1)/主副状态,其中通道0是PATA,1是SATA;控制器0是主,1是从;M是主盘,S是副盘。分配完RAID阵列磁盘后,按F7。出现清除磁盘数据的提示。按Y清除硬盘的数据,弹出Array List窗口:如果没有问题,可以按Ctrl-X保存退出,也可以重建已经设置的RAID阵列。至此RAID建立完成,系统重启,可以安装OS了。

安装Windows XP系统,安装系统需要驱动软盘,主板附带的是XP用的,2000的需要自己制作。从光驱启动Windows XP系统安装盘,在进入蓝色的提示屏幕时按F6键,告诉系统安装程序:需要另外的存储设备驱动。当安装程序拷贝一部分设备驱动后,停下来提示你敲S键,指定存储设备驱动:

系统提示把驱动软盘放入软驱,按提示放入软盘后,敲回车。系统读取软盘后,提示你选择驱动。nForce的RAID驱动与Intel和VIA的不同,有两个:NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller都要安装。

第一次选择NVIDIA RAID CLASS DRIVER,敲回车系统读入,再返回敲S键提示界面,此时再敲S键,然后选择NVIDIA Nforce Storage Controller,敲回车,系统继续拷贝文件,然后返回到下面界面。

在这个界面里显示出系统已经找到NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller,可以敲回车继续。

系统从软盘拷贝所需文件后重启,开始检测RAID盘,找到后提示设置硬盘。此时用户可以建立一个主分区,并格式化,然后系统向硬盘拷贝文件。在系统安装期间不要取出软盘,直到安装完成。

剩余的磁盘分区等安装完系统后,我们可以用XP的磁盘管理器分区格式化。用XP的磁盘管理器分区,等于/小于20GB的逻辑盘可以格式化为FAT32格式。大于20GB的格式化为NTF格式。

⑼ 什么是电脑的磁盘阵列

磁盘阵列(Rendant
Arrays
of
Inexpensive
Disks,RAID),有“价格便宜且多余的磁盘阵列”之意。原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。同时利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。磁盘阵列还能利用同位检查(Parity
Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。

阅读全文

与电脑硬盘列阵相关的资料

热点内容
苹果平板下载啥软件增强信号 浏览:959
装了4个硬盘后电脑经常黑屏 浏览:379
电脑安装二根内存条 浏览:372
绘画设计电脑配置 浏览:322
苹果电脑如何更改 浏览:122
奥特曼动画片免费网站 浏览:239
电脑开机没反应听不到开机声 浏览:393
华为平板电脑关闭哪些程序 浏览:341
桌面上此电脑每次开机自动换位置 浏览:570
如何查阅电脑硬盘序列号 浏览:587
刷机后电脑屏幕太宽 浏览:714
君威行车电脑设置 浏览:695
苹果去马赛克视频软件 浏览:33
电脑下载时间久黑屏 浏览:448
电脑上显示不到U盘 浏览:520
电脑笑声软件哪个好 浏览:838
电脑上哪个键能提供帮助 浏览:769
电脑开机一直滴滴滴的响 浏览:68
电脑重新安装系统后怎样连网 浏览:35
电脑上哪些是常见的杀毒软件 浏览:187