台式电脑前端面板的标准接口和按钮主要有:开机键,重启键,3.5㎜音频接口,3.5㎜麦克风接口,2个usb2.0接口,1个usb3.0接口。还有特殊的接口:灯效开关,type -c接口,光驱弹出按钮。
主要就是这些接口和按钮。
② 连接器主要包括哪些
电机连接器一般指轴连接器和电连接器:
1、轴连接器,用于轴--轴连接
2、电连接器,用在电子信号与电源上的连接元件及其附属配件
3、信号连接器
4、防水连接器和塑壳连接器
5、航空插头连接器和放大器电机连接器
连接器:英文名CONNECTOR。
指所有电子电源信号音连接桥梁之元器件。 易言之:所有用在电子信号与电源上的连接元件及其附属配件等均称为连接器。是一种电机系统,通过机械方法产生的电性连接。
连接器适用于一般电子、电机、电脑、通讯及相关产业所设计生产之产品,包括家庭如收录机、电视机、录像机、影碟机等,同代&办公自动化设备如打字机、复印机、电脑及其周边设备等
③ 电脑主板用到哪些连接器
我客户做电脑主板的 他们用到排针、排母和DB-15P 这些连接器我们都有做
QQ:1152784307
④ 电脑主机后面板有哪些部件
主机前面板 一般有 USB口,耳机,话筒 ,小软,光驱
后面板 一般有USB口,耳机,话筒,显示器接口,COM口,键盘口,鼠标口 ,电源接口。
⑤ 计算机主板上有哪些接口
第一部分 外部接口:用于连接各种PC外设
USB
USB(Universal Serial Bus 通用串行总线)用于将鼠标、键盘、移动硬盘、数码相机、VoIP电话(Skype)或打印机等外设等连接到PC。理论上单个USB host控制器可以连接最多127个设备。
USB 目前有两个版本,USB1.1的最高数据传输率为12Mbps,USB2.0则提高到480Mbps。注意:二者的物理接口完全一致,数据传输率上的差别完全由PC的USB host控制器以及USB设备决定。USB可以通过连接线为设备提供最高5V,500mA的电力。
USB接口有3种类型:
- Type A:一般用于PC
- Type B:一般用于USB设备
- Mini-USB:一般用于数码相机、数码摄像机、测量仪器以及移动硬盘等
左边接头为Type A(连接PC),右为Type B(连接设备)
USB Mini
USB延长线,一般不应长于5米
请认准接头上的USB标志
USB分离线,每个端口各可以得到5V 500mA的电力。移动硬盘等用电大户可以使用这种线来从第二个USB端口获得额外电源(500+500=1000mA)
你见过吗:USB接口的电池充电器
比较常见的USB转PS/2接口
IEEE-1394/Firewire/i.Link
IEEE -1394是一种广泛使用在数码摄像机、外置驱动器以及多种网络设备的串行接口,苹果公司又把它称作Firewire(火线),而索尼公司的叫法是 i.Link。目前,数据传速率为400Mbps的IEEE-1394标准正被800Mbps的IEEE-1394b (或Firewire-800)所取代。普通火线设备使用的6针线缆可提供电源,另外还有一种不提供电源的4针线缆。Firewire-800设备使用的是9针线缆以及接口。
一头6针,一头4针的1394连接线
1394扩展卡挡板,提供两个6针接口以及一个较小的4针接口
可提供电源的6针接头
不提供电源的4针接头,一般用于数码摄像机以及笔记本电脑
Cinch RCA(复合视频,音频,HDTV分量)
这种接口通过同轴电缆传输多种电信号。它们的功能可以容易地按接口颜色加以区分,见下表:
警告:音频SPDIF/复合视频(FBAS),HDTV分量/音频右声道这两组接口的颜色可能容易搞混,请注意查看说明书,并注意HDTV分量接口总是3个一组。
不同颜色,传输不同信号的RCA线缆
两种SPDIF(数字音频)接口:左边为RCA/同轴接口,右边是TOSLINK(光纤)接口
TOSKLINK光纤接口
SCART - RCA转接器(复合视频,双声道音频和S-Video),SCART请见下文详解
术语表:
RCA = Radio Corporation of America 美国无线电公司
SPDIF = Sony/Philips Digital Interfaces 索尼/飞利浦数码接口
PS/2
左边是带颜色标示的PS/2接口,右边的没有颜色标示
PS/2是一种古老的接口,广泛用于键盘和鼠标的连接。现在的PS/2接口一般都带有颜色标示,紫色用于连接键盘,绿色用于连接鼠标。
些主板上的PS/2接口可能没有颜色标示,别担心,插错接口并不会损坏设备,但此时鼠标键盘将无法工作,电脑也可能无法启动,很简单,将鼠标键盘对调一下接口肯定就对了。
前面提到的USB - PS/2转接器
VGA显示接口
显卡上的VGA显示接口
显示器使用一种15针Mini-D-Sub(又称HD15)接口通过标准模拟界面连接到PC上。通过合适的转接器,你也可以将一台模拟显示器连接到DVI- I界面上。VGA接口传输红、绿、蓝色值信号(RGB)以及水平同步(H-Sync)和垂直同步(V-Sync)信号。
显示信号线上的VGA接头
新款显卡一般都提供2个DVI接口,可使用一种DVI-VGA转接器来在两种接口之间转换。
术语表:VGA = Video Graphics Array 视频图像阵列
DVI显示接口
DVI是一种主要针对数字信号的显示界面,这种界面无需将显卡产生的数字信号转换成有损模拟信号,然后再在数字显示设备上进行相反的操作。数字TDMS信号的优点还包括允许显示设备负责图像定位以及信号同步工作。
一块具备两个DVI端口的显卡,可同时连接两个(数字)显示器
因为数字显示取代模拟显示的进程还比较缓慢,目前这两种技术还处于并存阶段,现在的显卡通常可以支持双显示器。广泛使用的DVI-I接口可以同时支持模拟和现实信号。而少见的多的DVI-D接口只能输出数字信号,无法输出任何模拟信号。许多显卡以及部分显示器都提供了DVI-I - VGA转接器,这样那些只提供15针D-Sub-VGA接头的老显示器也可以在DVI-I接口上继续工作。
DVI接口类型及其阵脚分布(显卡上最经常使用的是DVI-I)
术语表:DVI = Digital Visual Interface 数字视觉接口
RJ45,用于LAN和ISDN
有线网络主要使用我们都很熟悉的双绞线进行互连。现在,千兆以太网正在逐步取代百兆以太网。网线主要有两种类型:
- 直通线,最广泛使用的双绞线
- 交叉线,用于特殊情况下的连接
使用直通线的网络设备一般连接到交换机(switch)或集线器(hub)上,如果想要直接连接两种同类设备,比如两台PC,则可以使用交叉线而无需通过交换机或集线器。
PCI网卡上的RJ45接口
网卡使用LED指示灯来表示网络活动状态
在欧洲和北美,ISDN等网络设备同样使用RJ45接口。ISDN在欧洲广泛使用,而在北美宽带连接比较普及,但只有DSL使用RJ45,cable modem通常使用BNC接口。因此,用户需要注意RJ45接口旁标注的是“LAN”,“ISDN”还是“DSL”,当然插错也不比担心设备损坏。
RJ11,用于Modem和电话
RJ11和RJ45看起来很相似,但RJ11只有4针,而RJ45有8针。在电脑上,RJ11主要用于连接modem。由于各国电话端口不尽相同,因此RJ11有许多种转接器。
笔记本上的RJ11接口
用于德国电话的RJ11转接器。今后各国自定义的电话接口规范将逐渐消失
S-Video(又称Hosiden, Y/C)
S-Video线
这种4针接口可以分离并传输传输亮度(Y,带同步数据的亮度)和颜色(C,色度)。分离亮度和颜色可以提供比复合视频(FBAS)更好的图像品质。在模拟视频信号中,HDTV分量效果最好,而排在第二位的就是S-Video了。当然,通过TDMS提供的DVI或HDMI(请看下文详解)等纯数字信号可以提供更好的图像,是目前最好的选择。
显卡上的S-Video端口
SCART
SCART是一种广泛用于欧洲和亚洲的混合连接器。这种界面可以同时传输S-Video,RGB以及模拟立体声音频信号,不过不支持HDTV的YpbPr和YcrCb分量信号。
用于连接TV和VCR的SCART接口
前面已经提到过的SCART - RCA转接器(复合视频,双声道音频和S-Video)
HDMI
HDMI是用于传输未压缩HDTV信号的数字多媒体界面,最高支持1920x1080交错信号(1080i),集成数字版权管理(DRM)防拷机制。目前我们使用的是一种19针Type A接口。
而29 针的Type B(支持高于1080i的分辨率)HDMI接口目前还没有产品支持。HDMI和DVI-D采用同样的数字TDMS信号生成技术,因此我们可以在高端产品上看到HDMI-DVI转接器。另外,HDMI还可以传输8声道,24位,192KHz采样率的音频信号。HDMI信号线不应超过15米。
HDMI-DVI转接线
术语表:HDMI = High Definition Multimedia Interface 高清晰多媒体接口
PCIe通道数及对应带宽
第二部分 内部接口:用于PC系统内部连接
Serial ATA (SATA)
主板上的4个SATA接口
SATA 是一种连接存储设备(大多为硬盘)的串行总线,用于取代传统的并行ATA界面。第一代SATA目前已经得到广泛应用,其最大数据传输率为150MBps,信号线最长1米。SATA一般采用点对点的连接方式,即一头连接主板上的SATA接口,另一头直接连硬盘,没有其他设备可以共享这条数据线,而并行ATA 允许这种情况(每条数据线可以连接1-2个设备),因此也就无需像并行ATA硬盘那样设置主盘和从盘。
许多SATA数据线末端带有保护套,防止娇嫩的金手指受损。
多种形式的SATA电源线
SATA电源接头
各种颜色的数据线
尽管SATA主要设计为PC机箱内使用,但也出现了许多让SATA变为外部接口的产品。
目前的SATA硬盘一般有两种电源接口,可以使用传统的D型电源接头
或者使用SATA专用的电源接头
ATA/133 (Parallel ATA,UltraDMA/133或E-IDE)
这是一种用于连接硬盘和光驱(CD和DVD)的并行总线,也称作Parallel ATA(并行ATA)。最新版本的并行ATA使用40针,80线的扁平数据线来连接主板和驱动器。每条数据线最多可以连接2台设备,需要将设备分别设置为主盘(master)和从盘(slave),这样的设置一般通过驱动器上的跳线实现。
IDE数据线,注意接头上的突起以及缺少一个针孔
连接一台DVD光驱: 数据线的红色边缘总是靠近电源线
ATA/133接口:上为2.5"硬盘,下为是3.5"硬盘。
想在台式机上使用2.5"笔记本硬盘可以使用这样的转接器
警告:在多大多数情况下,数据线接头上的突起可以有效防止数据线反插,但有些老款数据线可能没有这样的设计。接插数据线时请遵循这样的原则:数据线有颜色标示的一侧边缘(一般是红色)应该对准主板IDE接口标有数字1的一侧,实际上,该边缘表示第一针。
此外,数据线有颜色标示的边缘应该靠近驱动器的电源线。同样也要仔细检查主板和驱动器上的IDE接口以及数据线接头,确保它们缺针及缺针孔的位置相对应。
用一条数据线连接两台设备后,需要用下图中的蓝色跳线帽进行主从盘设置,硬盘上一般会有图示说明,或浏览硬盘厂商网站。
术语表:
ATA = Advanced Technology Attachment 高级技术附加装置
E-IDE = Enhanced Integrated Drive Electronics 增强型综合驱动器电子
AGP 图形加速接口
带固定夹的AGP插槽
目前大多数显卡都使用图形加速接口(AGP),少数电脑(大多历史悠久)还在使用PCI接口显卡。而新一代的PCI Express (PCIe)接口来势汹汹,大有取代AGP之势。注意:PCI Express为串行总线,而PCI(不带Express)是并行总线,二者完全不同。
上为AGP显卡下为PCI Express显卡,注意二者金手指部分的显着不同
工作站主板采用AGP Pro插槽,能为电源需求很大的OpenGL显卡提供额外电力,同时这种接口也可接插主流显卡。不过,AGP Pro没有被广泛接受,目前的高端显卡要么采用独立的电源供应,要么在显卡上设计额外的电源接口。
高端显卡通过传统的4针或6针D型电源接口提供额外供电
PCIe显卡上常见的Molex 6针电源接口
AGP倍速及对应带宽
注意:AGP接口有两种电压标准:AGP 1X和2X采用3.3V,而AGP 4X和8X只支持1.5V。另外还有一种通用AGP卡可适应两种电压。AGP插槽内合适位置有分隔,防止AGP显卡被插入不兼容的插槽中。
最上面是金手指左侧有缺口的的3.3V AGP显卡,中间是金手指有两个缺口(一个针对AGP 3.3V,另一个针对AGP 1.5V)的通用AGP显卡,最下面是金手指右边有缺口的1.5V AGP显卡。
PCI Express:串行总线
PCI Express X16插槽(图片上方)和2个2 PCI Express X1插槽(图片下方)
用于nVIDIA SLI显卡的PCI-Express双插槽,中间是一个较小的PCI Express x1插槽
PCI Express是一种串行总线,而PCI-X(请见下文详解)或PCI都是并行总线接口。
PCI Express (PCIe)是用于显卡的最新接口界面,也可用于连接其它板卡,不过目前此类板卡还非常少。理论上,PCIe X16能提供接近两倍于AGP 8X的单向传输带宽,但实际上,带宽上的优势并未被当今的显卡完全利用。
AGP显卡(图片上方)和PCI-Express显卡(图片下方)
下图从上到下依次为:PCI Express x16,两个PCI,PCI Express x1
PCI和PCI-X:并行总线
PCI是用于连接PC各种板卡的总线标准,比如网卡、Modem卡、声卡和视频编辑卡等等。
主流主板上大多采用32位,33MHz,2.1版的PCI接口,可以提供最高133MB/s的带宽。有些主板还具备66MHz的2.3版PCI,不过目前符合该规范的产品不多。
并行PCI总线的另一个发展方向是PCI-X。这种插槽在工作站和服务器主板上很常见,SCSI控制器和多端口网卡需要这种高带宽界面。举例来说,64位,133MHz的PCI-X 1.0可以提供1GB/s的带宽。
PCI 2.1规范目前支持3.3V电压。插槽左边的分隔能防止老型号5V PCI板卡(图中所示)的错误插入
这张显卡金手指左侧有缺口,能正确插入3.3V PCI插槽
插入64位PCI-X插槽的RAID控制卡
下图上方为一条32位PCI插槽,下面是3条64位PCI-X插槽,最下方的绿色插槽支持ZCR(Zero Channel RAID)
术语表:PCI = Peripheral Component Interconnect 周边组件连接界面
电源接口及ATX标准
电源插头
AMD/Intel平台ATX电源规范
24针的扩展ATX(Extented ATX)电源插头
20针ATX主板电源接口
20针ATX电源线
6针EPS接头
已经很难看到的软驱电源线
20/24针可分离式主板电源接头(ATX或EATX)
错误示范!可别把20/24针可分离式电源接头的4针扩展接头插进12V辅助(AUX)电源接口中(一般来说那个接口也比较远你够不着)。这个家伙要么成为Extended ATX电源接头的一部分,要么完全无用(在使用20针ATX电源接口的主板上)。
这个单独的4针电源线才属于12V辅助(AUX)电源接口,很容易识别:两根黄色和两根黑色电线
有些主板还需要这样的一个D型电源接头额外供电
⑥ 连接电脑和宽带的连接器叫什么
依不同传输介质可以有如下叫法
1、Modem调制解调器
2、ADSL猫
3、光纤猫
ps: 12电话线 3光纤
⑦ 电脑主板各部件详细图解
电脑主板各部分详解是什么呢?
大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面我们就以图解的形式带你来全面了解主板。
一、主板图解
一块主板主要由线路板和它上面的各种元器件组成
1.线路板PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。此主题相关图片如下:主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。此主题相关图片如下:另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为33.2cmX30.48cm,AT主板需与AT机箱电源等相搭配使用,现已被淘汰。而ATX板型则像一块横置的大AT板,这样便于ATX机箱的风扇对CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依*连线才能输出。另外ATX还有一种Micro ATX小板型,它最多可支持4个扩充槽,减少了尺寸,降低了电耗与成本。
2.北桥芯片
芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片,如Intel的i845GE芯片组由82845GE GMCH北桥芯片和ICH4(FW82801DB)南桥芯片组成;而VIA KT400芯片组则由KT400北桥芯片和VT8235等南桥芯片组成(也有单芯片的产品,如SIS630/730等),其中北桥芯片是主桥,其一般可以和不同的南桥芯片进行搭配使用以实现不同的功能与性能。此主题相关图片如下:北桥芯片一般提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持,通常在主板上*近CPU插槽的位置,由于此类芯片的发热量一般较高,所以在此芯片上装有散热片。 3.南桥芯片
此主题相关如下:南桥芯片主要用来与I/O设备及ISA设备相连,并负责管理中断及DMA通道,让设备工作得更顺畅,其提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、Ultra DMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持,在*近PCI槽的位置。 4.CPU插座
CPU插座就是主板上安装处理器的地方。主流的CPU插座主要有Socket370、Socket 478、Socket 423和Socket A几种。其中Socket370支持的是PIII及新赛扬,CYRIXIII等处理器;Socket 423用于早期Pentium4处理器,而Socket 478则用于目前主流Pentium4处理器。此主题相关如下:而Socket A(Socket462)支持的则是AMD的毒龙及速龙等处理器。另外还有的CPU插座类型为支持奔腾/奔腾MMX及K6/K6-2等处理器的Socket7插座;支持PII或PIII的SLOT1插座及AMD ATHLON使用过的SLOTA插座等等。 5.内存插槽
此主题相关如下:内存插槽是主板上用来安装内存的地方。目前常见的内存插槽为SDRAM内存、DDR内存插槽,其它的还有早期的EDO和非主流的RDRAM内存插槽。需要说明的是不同的内存插槽它们的引脚,电压,性能功能都是不尽相同的,不同的内存在不同的内存插槽上不能互换使用。对于168线的SDRAM内存和184线的DDR SDRAM内存,其主要外观区别在于SDRAM内存金手指上有两个缺口,而DDR SDRAM内存只有一个。
6.PCI插槽此主题相关如下:PCI(peripheral component interconnect)总线插槽它是由Intel公司推出的一种局部总线。它定义了32位数据总线,且可扩展为64位。它为显卡、声卡、网卡、电视卡、MODEM等设备提供了连接接口,它的基本工作频率为33MHz,最大传输速率可达132MB/s。 7.AGP插槽
此主题相关如下:AGP图形加速端口(Accelerated Graphics Port)是专供3D加速卡(3D显卡)使用的接口。它直接与主板的北桥芯片相连,且该接口让视频处理器与系统主内存直接相连,避免经过窄带宽的PCI总线而形成系统瓶颈,增加3D图形数据传输速度,而且在显存不足的情况下还可以调用系统主内存,所以它拥有很高的传输速率,这是PCI等总线无法与其相比拟的。AGP接口主要可分为AGP1X/2X/PRO/4X/8X等类型。8.ATA接口
ATA接口是用来连接硬盘和光驱等设备而设的。主流的IDE接口有ATA33/66/100/133,ATA33又称Ultra DMA/33,它是一种由Intel公司制定的同步DMA协定,传统的IDE传输使用数据触发信号的单边来传输数据,而Ultra DMA在传输数据时使用数据触发信号的两边,因此它具备33MB/S的传输速度。此主题相关图片如下:而ATA66/100/133则是在Ultra DMA/33的基础上发展起来的,它们的传输速度可反别达到66MB/S、100M和133MB/S,只不过要想达到66MB/S左右速度除了主板芯片组的支持外,还要使用一根ATA66/100专用40PIN的80线的专用EIDE排线。此主题相关图片如下:此外,现在很多新型主板如I865系列等都提供了一种Serial ATA即串行ATA插槽,它是一种完全不同于并行ATA的新型硬盘接口类型,它用来支持SATA接口的硬盘,其传输率可达150MB/S。
9.软驱接口
此主题相关如下:软驱接口共有34根针脚,顾名思义它是用来连接软盘驱动器的,它的外形比IDE接口要短一些。
10.电源插口及主板供电部分
电源插座主要有AT电源插座和ATX电源插座两种,有的主板上同时具备这两种插座。AT插座应用已久现已淘汰。而采用20口的ATX电源插座,采用了防插反设计,不会像AT电源一样因为插反而烧坏主板。除此而外,在电源插座附近一般还有主板的供电及稳压电路。此主题相关图片如下:主板的供电及稳压电路也是主板的重要组成部分,它一般由电容,稳压块或三极管场效应管,滤波线圈,稳压控制集成电路块等元器件组成。此外,P4主板上一般还有一个4口专用12V电源插座。
11.BIOS及电池
BIOS(BASIC INPUT/OUTPUT SYSTEM)基本输入输出系统是一块装入了启动和自检程序的EPROM或EEPROM集成块。实际上它是被固化在计算机ROM(只读存储器)芯片上的一组程序,为计算机提供最低级的、最直接的硬件控制与支持。除此而外,在BIOS芯片附近一般还有一块电池组件,它为BIOS提供了启动时需要的电流。
此主题相关如下:常见BIOS芯片的识别主板上的ROM BIOS芯片是主板上唯一贴有标签的芯片,一般为双排直插式封装(DIP),上面一般印有“BIOS”字样,另外还有许多PLCC32封装的BIOS。此主题相关图片如下:早期的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用,因为紫外线照射会使EPROM内容丢失,所以不能随便撕下。现在的ROM BIOS多采用Flash ROM(快闪可擦可编程只读存储器),通过刷新程序,可以对Flash ROM进行重写,方便地实现BIOS升级。目前市面上较流行的主板BIOS主要有Award BIOS、AMI BIOS、Phoenix BIOS三种类型。Award BIOS是由Award Software公司开发的BIOS产品,在目前的主板中使用最为广泛。Award BIOS功能较为齐全,支持许多新硬件,目前市面上主机板都采用了这种BIOS。AMI BIOS是AMI公司出品的BIOS系统软件,开发于80年代中期,它对各种软、硬件的适应性好,能保证系统性能的稳定,在90年代后AMI BIOS应用较少;Phoenix BIOS是Phoenix公司产品,Phoenix BIOS多用于高档的原装品牌机和笔记本电脑上,其画面简洁,便于*作,现在Phoenix已和Award公司合并,共同推出具备两者标示的BIOS产品。12.机箱前置面板接头机箱前置面板接头是主板用来连接机箱上的电源开关、系统复位、硬盘电源指示灯等排线的地方。一般来说,ATX结构的机箱上有一个总电源的开关接线(Power SW),其是个两芯的插头,它和Reset的接头一样,按下时短路,松开时开路,按一下,电脑的总电源就被接通了,再按一下就关闭。而硬盘指示灯的两芯接头,一线为红色。在主板上,这样的插针通常标着IDE LED或HD LED的字样,连接时要红线对一。这条线接好后,当电脑在读写硬盘时,机箱上的硬盘的灯会亮。电源指示灯一般为两或三芯插头,使用1、3位,1线通常为绿色。此主题相关图片如下:在主板上,插针通常标记为Power LED,连接时注意绿色线对应于第一针( )。当它连接好后,电脑一打开,电源灯就一直亮着,指示电源已经打开了。而复位接头(Reset)要接到主板上Reset插针上。主板上Reset针的作用是这样的:当它们短路时,电脑就重新启动。而PC喇叭通常为四芯插头,但实际上只用1、4两根线,一线通常为红色,它是接在主板Speaker插针上。在连接时,注意红线对应1的位置。13.外部接口此主题相关图片如下:ATX主板的外部接口都是统一集成在主板后半部的。现在的主板一般都符合PC'99规范,也就是用不同的颜色表示不同的接口,以免搞错。一般键盘和鼠标都是采用PS/2圆口,只是键盘接口一般为蓝色,鼠标接口一般为绿色,便于区别。而USB接口为扁平状,可接MODEM,光驱,扫描仪等USB接口的外设。而串口可连接MODEM和方口鼠标等,并口一般连接打印机。14.主板上的其它主要芯片除此而外主板上还有很多重要芯片:声卡芯片现在的主板集成的声卡大部分都是AC'97声卡,全称是Audio CODEC'97,这是一个由Intel、Yamaha等多家厂商联合研发并制定的一个音频电路系统标准。主板上集成的AC97声卡芯片主要可分为软声卡和硬声卡芯片两种。所谓的AC'97软声卡,只是在主板上集成了数字模拟信号转换芯片(如ALC201、ALC650、AD1885等),而真正的声卡被集成到北桥中,这样会加重CPU少许的工作负担。此主题相关图片如下:所谓的AC'97硬声卡,是在主板上集成了一个声卡芯片(如创新CT5880,雅马哈的744,VIA的Envy 24PT),这个声卡芯片提供了独立的声音处理,最终输出模拟的声音信号。这种硬件声卡芯片相对比软声卡在成本上贵了一些,但对CPU的占用很小。网卡芯片此主题相关图片如下:现在很多主板都集成了网卡。在主板上常见的整合网卡所选择的芯片主要有10/100M的RealTek公司的8100(8139C/8139D芯片)系列芯片以及威盛网卡芯片等。除此而外,一些中高端主板还另外板载有Intel、3COM、Alten和Broadcom的千兆网卡芯片等,如Intel的i82547EI、3COM 3C940等等。IDE阵列芯片此主题相关图片如下:一些主板采用了额外的IDE阵列芯片提供对磁盘阵列的支持,其采用IDE RAID芯片主要有HighPoint、Promise等公司的产品的功能简化版本。例如Promise公司的PDC20276/20376系列芯片能提供支持0,1的RAID配置,具自动数据恢复功能。美国高端HighPoint公司的RAID芯片如HighPoint HPT370/372/374系列芯片,SILICON SIL312ACT114芯片等等。//本文来自电脑软硬件应用网www.45it.comI/O控制芯片I/O控制芯片(输入/输出控制芯片)提供了对并串口、PS2口、USB口,以及CPU风扇等的管理与支持。常见的I/O控制芯片有华邦电子(WINBOND)的W83627HF、W83627THF系列等,例如其最新的W83627THF芯片为I865/I875芯片组提供了良好的支持,除可支持键盘、鼠标、软盘、并列端口、摇杆控制等传统功能外,更创新地加入了多样新功能,例如,针对英特尔下一代的Prescott内核微处理器,提供符合VRD10.0规格的微处理器过电压保护,如此可避免微处理器因为工作电压过高而造成烧毁的危险。此主题相关图片如下:此外,W83627THF内部硬件监控的功能也同时大幅提升,除可监控PC系统及其微处理器的温度、电压和风扇外,在风扇转速的控制上,更提供了线性转速控制以及智能型自动控转系统,相较于一般的控制方式,此系统能使主板完全线性地控制风扇转速,以及选择让风扇是以恒温或是定速的状态运转。这两项新加入的功能,不仅能让使用者更简易地控制风扇,并延长风扇的使用寿命,更重要的是还能将风扇运转所造成的噪音减至最低。频率发生器芯片频率也可以称为时钟信号,频率在主板的工作中起着决定性的作用。我们目前所说的CPU速度,其实也就是CPU的频率,如P4 1.7GHz,这就是CPU的频率。电脑要进行正确的数据传送以及正常的运行,没有时钟信号是不行的,时钟信号在电路中的主要作用就是同步;因为在数据传送过程中,对时序都有着严格的要求,只有这样才能保证数据在传输过程不出差错。时钟信号首先设定了一个基准,我们可以用它来确定其它信号的宽度,另外时钟信号能够保证收发数据双方的同步。对于CPU而言,时钟信号作为基准,CPU内部的所有信号处理都要以它作为标尺,这样它就确定CPU指令的执行速度。此主题相关图片如下:时钟信号频率的担任,会使所有数据传送的速度加快,并且提高了CPU处理数据的速度,这就是我们为什么超频可以提高机器速度的原因。要产生主板上的时钟信号,那就需要专门的信号发生器,也称为频率发生器。但是主板电路由多个部分组成,每个部分完成不同的功能,而各个部分由于存在自己的独立的传输协议、规范、标准,因此它们正常工作的时钟频率也有所不同,如CPU的FSB可达上百兆,I/O口的时钟频率为24MHz,USB的时钟频率为48MHz,因此这么多组的频率输出,不可能单独设计,所以主板上都采用专用的频率发生器芯片来控制。此主题相关图片如下:频率发生器芯片的型号非常繁多,其性能也各有差异,但是基本原理是相似的。例如ICS 950224AF时钟频率发生器,是在I845PE/GE的主板上得到普遍采用时钟频率发生器,通过BIOS内建的“AGP/PCI频率锁定”功能,能够保证在任何时钟频率之下提供正确的PCI/AGP分频,有了起提供的这“AGP/PCI频率锁定”功能,使用多高的系统时钟都不用担心硬盘里面精贵的数据了,也不用担心显卡、声卡等的安全了,超频,只取决于CPU和内存的品质而已了。
⑧ 什么是电脑接口常用接口有哪些呀
一、 并行接口
并行接口又简称为“并口”。目前,计算机中的并行接口主要作为打印机端口,使用的不再是36 针接头而是25 针D 形接头。所谓“并行”,是指8 位数据同时通过并行线进行传送,这样数据传送速度大大提高,但并行传送的线路长度受到限制 ,因为长度增加,干扰就会增加,数据也就容易出错。现在有5 种常见的并口:4 位、8 位、半8 位、EPP 和ECP,大多数PC 机配有4 位或8 位的并口,支持全部IEEE1284 并口规格的计算机基本上都配有ECP 并口。
标准并行口指4 位、8 位和半8 位并行口。4 位口一次只能输入4 位数据,但可以输出8 位数据;8位口可以一次输入和输出8 位数据。EPP 口(增强并行口)由Intel 等公司开发,允许8 位双向数据传送,可以连接各种非打印机设备,如扫描仪、LAN 适配器、磁盘驱动器和CD-ROM 驱动器等。ECP 口(扩展并行口)由Microsoft 、HP 公司开发,能支持命令周期、数据周期和多个逻辑设备寻址,在多任务环境下可以使用MA(直接存储器访问)。目前几乎所有Pentium 级以上的主板都集成了并行口,并标注为Par-allel 1 或LPT 1,这是一个25 针的双排针插座。
2.中断处理方式
在这种方式下,CPU 不再被动等待,而是一直执行其他程序,一旦外设交换数据准备就绪,就向CPU提出服务请求。CPU 如果响应该请求,便暂时停止当前执行的程序,执行与该请求对应的服务程序,完成后,再继续执行原来被中断的程序。中断处理方式的优点是显而易见的,它不但为CPU 省去了查询外设状态和等待外设就绪的时间 ,提高了CPU 的工作效率,还满足了外设的实时要求。但是需要为每个设备分配一个中断号和相应的中断服务程序,此外还需要一个中断控制器(I/O 接口芯片)管理I/O 设备提出的中断请求,例如设置中断屏蔽 、中断请求优先级等,这样将会加重系统的负担。此外中断处理方式的缺点是每传送一个字符都要进行中断,启动中断控制器,还要保留和恢复现场以便能继续原程序的执行,系统的工作量很大,这样如果需要大量数据交换,系统的性能会很低。
3.DMA(直接存储器存取)传送方式
DMA 最明显的一个特点是采用一个专门的硬件电路——DMA 控制器控制内存与外设之间的数据交流,无须CPU 介入 ,从而大大提高了CPU 的工作效率。在进行DMA 数据传送之前,DMA 控制器会向CPU 申请总线控制权。如果CPU 允许,则将控制权交出,因此在数据交换时,总线控制权由DMA 控制器掌握,在传输结束后,DMA 控制器将总线控制权交还给CPU,所以现在采用DMA 方式的设备CPU 占用率都比较低。
不过由于计算机的外围设备品种繁多,而且大多采用了机电传动设备,因此现在CPU 在与I/O 设备进行数据交换时仍存在以下问题:
(1)速度不匹配。I/O 设备的工作速度要比CPU 慢许多,而且由于种类的不同,他们之间的速度差异也很大,例如硬盘的传输速度就要比打印机快出很多。
(2)时序不匹配。各个I/O 设备都有自己的定时控制电路,以自己的速度传输数据,无法与CPU 的时序取得统一。
(3)信息格式不匹配。不同的I/O 设备存储和处理信息的格式不同,例如可以分为串行和并行两种,也可以分为二进制格式、ACSII 编码和BCD 编码等。
(4)信息类型不匹配。
以上这些问题都是造成计算机实际使用效率不高的重要原因。
二、串行接口
计算机的标准接口叫做串行接口,简称为“串口”。现 在的PC 机一般有两个串行口COM 1 和COM 2 。串行口不 同于并行口之处在于它的数据和控制信息是一位接一位 地传送出去的。 虽然这样速度会慢一些,但传送距离较并行口更长, 因此若要进行较长距离的通信时,应使用串行口。通常 COM 1 使用的是9 针D 形连接器,而COM 2 有的使用的是 老式的DB25 针连接器。
三、USB 接口
USB 即“Universal Serial Bus ”,中文名称为通 用串行总线。这是近两年逐步在PC 领域广为应用的新型接口技术。理论上讲,USB 技术由3 部分组成:具备USB 接口的PC 系统、能够支持USB 系统软件和使用USB 接口 的设备。
自从微软推出Win9x 以后,USB 进入实用阶段。据 Dataquest 公司统计结果显示,仅1999 年全球已有1 亿台USB 设备售出,而这个数字到2000 年已增加到1 亿 5000 万台,预计到2001 年这个数字至少还会在这个基础上翻一番。
USB 设备有两种不同的连接器,称为A 系列和B 系 列。A 系列连接器主要是为那些要求电缆保留永久连接 而设计的,比如集线器、键盘和鼠标。大多数主板上的 USB 接口都是A 系列连接器。B 系列连接器是为那些需要可以分离电缆的设备二设计的。如打印机、扫描仪、Modem 等。物理的USB 插头是小型的,与典型的串 口或并口电缆不同,插头不是通过螺丝和螺母连接。
理论上USB 可以串行连接127 个设备,但在实际应用测试中,也许串联3 ~4 个设备就已经力不从心了。
而且,作为USB 产品本身,只有键盘具备输入、输出双头设计,其 他产品一律只有一个输入接口,所以就无法再连接另外一个USB 设 备。此时如果需要进行多个USB 设备的连接,就需要一个连接的桥 梁——USB HUB 。
目前的ATX 主板一般只有两个内建的USB 接口(815E 芯片组将 此数量提升了一倍),但要连接4 个甚至4 个以上的USB 设备就必 须加装USB HUB,通过USB HUB 来扩充USB 接口数量。
USB HUB 可以连接USB 设备,同时也可以串接另外一个USB HUB 。但是USB HUB 连续串接时不能超过三个,也就是说,不能 在第3 个被串联的USB 接口上再串接USB HUB 。
USB HUB 的安装步骤如下:
首先应开启主板上的USB 接口。检查 CMOS SETUP 中的USB 选项,如果是选择为 Disabled,请将此选项改成Enabled,存 储后进入Windows 便可找到USB 控制器。一 般的HUB 有一对二、一对四和一对五3 种 类型。所谓一对二,就是通过原来的一个 USB 接口,扩充出两个USB 接口。说是一 对二,但由于会占用原先的一个USB 口, 因此虽然扩充出两个接口,但实质上只多出一个USB 接口。依此类推,一对四便可多出三个USB 接口,而一对五则可多出四个USB 接口(接口越多HUB 的价格当然也就越高,相应的耗电量也会增加)。以一对四的USB HUB 安装举例,这种USB HUB 有1 个输入接头和4 个输出接头。输出接头与输入接头的形状不一样,很容易区分。
同时,随HUB 一般都会提供一条连接USB 装置的导线,导线接头一端用来连接USB 装置(或USB HUB)的输入端。导线的另一端接头则是用来与USB HUB 输出端连接的部分,依次对接安装就可以了。值得注意的是,现在许多USB 设备本身已经具备了USB HUB 的功能。比如某些显示器,其机壳背面有4 个USB输出接头(当然,还有一个是USB 输入接头),所以这台显示器也可承担一个USB HUB 的责任。还有一点就是电源,一对二的USB HUB 通常没有外接电源,而一对四的USB HUB 则大部分附带电源适配器,不过一对四的USBHUB就算不接电源,也是可以工作的,只是每个接口只能供电约100mA 左右,而一旦接上电源适配器,则可提升至500mA 左右。
目前最新的USB 标准为USB 2.0,它与上一版本的最大区别就是速度大幅提升。USB 2.0 数据传输率将达到480Mbit/s,整整比USB 1.1 超出40 倍。同时USB 2.0 保持了很好的兼容性,数据电缆和接口与以前的接口相同。换言之,USB 2.0 设备可以插在USB 1.1 接口上,而USB 1.1 设备也能够插在USB 2.0接口上使用。
时至今日,USB 已经在PC 机的多种外设上得到应用。输出设备方面 ,包括扫描仪、数码相机、数码摄像机、音频系统、显示器等等。扫描仪、数码相机和数码摄像机是最早使用USB 技术的产品,这几种产品主要还是利用USB 的高速数据传输能力。输入设备方面,USB 键盘、鼠标器以及游戏杆都表现得极为稳定,很少出现问题。此外还有DSL 的USB “猫”、IOMEGA 的USB ZIP 驱动器以及eTek 的USB PC网卡等等。如今越来越多的笔记本电脑都带有USB 接口,这并不是说笔记本电脑可以从USB 接口中获得多大的好处,关键在于那些经常在台式机和笔记本电脑之间传输数据的用户,可以使用USB 接口提高工作效率。
四、IEEE 1394 接口
IEEE 1394 接口具有高速、可热插拔等特点,在视 频系统中被广泛应用。由于电脑的飞速发展,现在已经在PC 机上看到1394 的身影了,如技嘉推出的GA-6VX7- 1394 主板就具有3 个1394 接口。IEEE 1394 的主板可广 泛利用在各种视频系统中,可通过IEEE 1394 接口简单 地将数码相机(VCR)里的数据直接送到PC 机里进行处理, 或通过IEEE 1394 接口传输到1394 硬盘里保存。而且 IEEE 1394 接口还可以用于网络连接,所有的设备均可通过IEEE 1394 接口高速传输数据。
可以预见,随着USB 和IEEE 1394 接口的发展,以后机箱后面的接口种类有可能会大大减少,也许除了这两种接口以外不会再有其他接口了。
五、磁盘接口
1.IDE 接口
IDE 接口也叫ATA 接口,只可以接两个容量不 超过528MB 的硬盘驱动器。IDE 接口的成本很低, 因此在386 、486 时期非常流行。但大多数IDE 接 口不支持DMA 数据传送,只能使用标准的PC I/O 端口指令来传送所有的命令、状态和数据。
2.EIDE 接口
EIDE 接口较IDE 接口有了很大改进,是目前 最流行的接口。首先它所支持的外设不再是2 个, 而是4 个。其支持的设备除了硬盘,还包括CD- ROM 驱动器和磁盘备份设备等。 其次,EIDE 标准取消了528MB 的容量限制,并 有更高的数据传送速率和更低的系统资源占用率。
3.SCSI 接口
SCSI(Small Computer System Interface) 接口又称为小型计算机系统接口,在服务器和图 形工作站中被广泛采用。除了硬盘使用这种接口 以外,SCSI 接口还可以连接CD-ROM 驱动器、扫描 仪和打印机等。
SCSI 接口具有以下几个特点:
(1)可同时连接7 个外设;
(2)总线配置为并行8 位、16 位或32 位;
(3)支持更高的数据传输速率,SCSI 通常可以达到5MB/s,FAST SCSI(SCSI-2)能达到10MB/s,最新的SCSI-3 甚至能够达到40MB/s;
(4)成本比IDE 和EIDE 接口高很多,而且SCSI 接口硬盘必须和SCSI 接口卡配合使用,SCSI 接口卡
也比IED 和EIDE 接口贵很多;
(5)SCSI 接口是智能化的,可以彼此通信而不增加CPU 的负担。在IDE 和EIDE 设备之间传输数据时,CPU 必须参与,而SCSI 设备在数据传输过程中是主动运行的,能在SCSI 总线内部执行具体步骤,直至完成再通知CPU 。
此外还有蓝牙接口,红外线接口